Closed ervinyo closed 4 years ago
HI, Thanks for your code because your code can improve my work in YOLOv2 but I have error in YOLOv3. Could anyone help me ? I put non local block in this part
pred_yolo_1 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'dilation_rate': 2, 'leaky': True, 'layer_idx': 80}, {'filter': (3*(5+nb_class)), 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 81}], do_skip=False) loss_yolo_1 = YoloLayer(anchors[12:], [1*num for num in max_grid], batch_size, warmup_batches, ignore_thresh, grid_scales[0], obj_scale, noobj_scale, xywh_scale, class_scale)([input_image, pred_yolo_1, true_yolo_1, true_boxes]) # Layer 83 => 86 x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 84}], do_skip=False) x = UpSampling2D(2)(x) # x = concatenate([x, skip_61]) # 1*1 conv for addition skip_61 = Conv2D(512, (1, 1), strides=(1,1), padding='same', name='add_conv_21', use_bias=False)(skip_61) skip_61 = BatchNormalization(name='add_norm_21')(skip_61) skip_61 = LeakyReLU(alpha=0.1)(skip_61) #non-local block skip_61 = non_local_block(skip_61, mode='embedded', compression=2)
and the result is
this issues is solve because my input is None. The input must be clear (have a number input size) can't None
HI, Thanks for your code because your code can improve my work in YOLOv2 but I have error in YOLOv3. Could anyone help me ? I put non local block in this part
Layer 80 => 82
and the result is