The torch7 has been installed in TX1 ,and can do some math operations. But when I test the simple demo as follows, a 'Bus Error' happens. Is there some advice? Thank you!
require 'nn';
net = nn.Sequential()
net:add(nn.SpatialConvolution(1, 6, 5, 5)) -- 1 input image channel, 6 output channels, 5x5 convolution kernel
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2)) -- A max-pooling operation that looks at 2x2 windows and finds the max.
net:add(nn.SpatialConvolution(6, 16, 5, 5))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.View(1655)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 1655
net:add(nn.Linear(1655, 120)) -- fully connected layer (matrix multiplication between input and weights)
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(120, 84))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(84, 10)) -- 10 is the number of outputs of the network (in this case, 10 digits)
net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems
print('Lenet5\n' .. net:__tostring());
input = torch.rand(1,32,32) -- pass a random tensor as input to the network
output = net:forward(input)
print(output)
The torch7 has been installed in TX1 ,and can do some math operations. But when I test the simple demo as follows, a 'Bus Error' happens. Is there some advice? Thank you!
require 'nn'; net = nn.Sequential() net:add(nn.SpatialConvolution(1, 6, 5, 5)) -- 1 input image channel, 6 output channels, 5x5 convolution kernel net:add(nn.ReLU()) -- non-linearity net:add(nn.SpatialMaxPooling(2,2,2,2)) -- A max-pooling operation that looks at 2x2 windows and finds the max. net:add(nn.SpatialConvolution(6, 16, 5, 5)) net:add(nn.ReLU()) -- non-linearity net:add(nn.SpatialMaxPooling(2,2,2,2)) net:add(nn.View(1655)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 1655 net:add(nn.Linear(1655, 120)) -- fully connected layer (matrix multiplication between input and weights) net:add(nn.ReLU()) -- non-linearity net:add(nn.Linear(120, 84)) net:add(nn.ReLU()) -- non-linearity net:add(nn.Linear(84, 10)) -- 10 is the number of outputs of the network (in this case, 10 digits) net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems
print('Lenet5\n' .. net:__tostring());
input = torch.rand(1,32,32) -- pass a random tensor as input to the network output = net:forward(input) print(output)