Closed teddybuy closed 5 years ago
I can't build sparseconvnet master with 18.04, gcc-6, cuda 9.0 and pytorch-nightly-1.0dev20181106... consider using torch 0.4.1 and sparseconvnet edf89af339ee929d9416f3509ff405450949f606.
Thanks for the quick response!
I tried spareseconvnet edf89af339ee929d9416f3509ff405450949f606, but still coredump.
I checked in my docker file and scripts to build/run docker image here, maybe you can build the docker image and try it, thanks! https://github.com/teddybuy/second.pytorch/tree/master/docker
docker host: nvidia driver version 396.44
in container (python 3.6.7, pytorch 0.4.1, gcc 5.4.0, cuda 9.1.85, cudnn 7.1, ubuntu 16.04.5):
aa7786ad552f:~/code/second.pytorch$ python
Python 3.6.7 (default, Oct 21 2018, 04:56:05)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
0.4.1
aa7786ad552f:~/code/second.pytorch$ gcc --version
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
aa7786ad552f:~/code/second.pytorch$ cat /etc/issue
Ubuntu 16.04.5 LTS \n \l
aa7786ad552f:~/code/second.pytorch$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
aa7786ad552f:~/code/second.pytorch$ cat /usr/include/x86_64-linux-gnu/cudnn_v*.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 1
#define CUDNN_PATCHLEVEL 2
I found the problem. sparseconvnet cannot be built and installed via Dockerfile, have to use nvidia-docker run .. bash install then docker commit.
python3 ./second/pytorch/train.py train --config_path=./second/configs/car.config --model_dir=/media/1t/data/kitti/second_model
Segmentation fault (core dumped)
seems it core dump at voxelnet.py: line 278
ret = self.scn_input((coors.cpu(), voxel_features, batch_size))
Here is docker file I used to generate the docker image. (I cp the extension.h fro pytorch 1.0)