I was use Titan V, and set batch size=5, num_workers=2.actully I tried batch_size =1 ,it wasn't work at all. Did anyone know how to solve this issue? my error as follow:
`(second) cxt@ubuntu4-X299X-AORUS-MASTER:~/codetest/second.pytorch$ python second/pytorch/train.py train --config_path=second/configs/car.fhd.config --model_dir=second/model_saved
/home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning:
Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup')
warnings.warn(errors.NumbaWarning(msg))
/home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning:
Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup')
warnings.warn(errors.NumbaWarning(msg))
/home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning:
Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup')
warnings.warn(errors.NumbaWarning(msg))
[ 41 1600 1408]
num parameters: 69
False _amp_stash
{'Car': 5}
[-1]
load 2207 Pedestrian database infos
load 14357 Car database infos
load 734 Cyclist database infos
load 1297 Van database infos
load 488 Truck database infos
load 224 Tram database infos
load 337 Misc database infos
load 56 Person_sitting database infos
After filter database:
load 2207 Pedestrian database infos
load 13442 Car database infos
load 734 Cyclist database infos
load 1297 Van database infos
load 488 Truck database infos
load 224 Tram database infos
load 337 Misc database infos
load 56 Person_sitting database infos
feature_map_size [1, 200, 176]
remain number of infos: 3712
feature_map_size [1, 200, 176]
remain number of infos: 3769
model: {
second: {
network_class_name: "VoxelNet"
voxel_generator {
point_cloud_range : [0, -40, -3, 70.4, 40, 1]
point_cloud_range : [0, -32.0, -3, 52.8, 32.0, 1]
voxel_size : [0.05, 0.05, 0.1]
#voxel_size : [0.2, 0.2, 0.4]
max_number_of_points_per_voxel : 5
#max_number_of_points_per_voxel : 35
}
voxel_feature_extractor: {
module_class_name: "SimpleVoxel"
num_filters: [16]
with_distance: false
num_input_features: 4
}
middle_feature_extractor: {
module_class_name: "SpMiddleFHD"
# num_filters_down1: [] # protobuf don't support empty list.
# num_filters_down2: []
downsample_factor: 8
num_input_features: 4
}
rpn: {
module_class_name: "RPNV2"
layer_nums: [5]
layer_strides: [1]
num_filters: [128]
upsample_strides: [1]
num_upsample_filters: [128]
use_groupnorm: false
num_groups: 32
num_input_features: 128
}
loss: {
classification_loss: {
weighted_sigmoid_focal: {
alpha: 0.25
gamma: 2.0
anchorwise_output: true
}
}
localization_loss: {
weighted_smooth_l1: {
sigma: 3.0
code_weight: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
}
classification_weight: 1.0
localization_weight: 2.0
}
num_point_features: 4 # model's num point feature should be independent of dataset
# Outputs
use_sigmoid_score: true
encode_background_as_zeros: true
encode_rad_error_by_sin: true
sin_error_factor: 1.0
use_direction_classifier: true # this can help for orientation benchmark
direction_loss_weight: 0.2 # enough.
num_direction_bins: 2
direction_limit_offset: 1
# Loss
pos_class_weight: 1.0
neg_class_weight: 1.0
loss_norm_type: NormByNumPositives
# Postprocess
post_center_limit_range: [0, -40, -2.2, 70.4, 40, 0.8]
nms_class_agnostic: false # only valid in multi-class nms
box_coder: {
ground_box3d_coder: {
linear_dim: false
encode_angle_vector: false
}
}
target_assigner: {
class_settings: {
anchor_generator_range: {
sizes: [1.6, 3.9, 1.56] # wlh
anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.6
unmatched_threshold : 0.45
class_name: "Car"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3 # 0.4 in submit, but 0.3 can get better hard performance
nms_iou_threshold: 0.01
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
# anchor_generators: {
# anchor_generator_stride: {
# sizes: [1.6, 3.9, 1.56] # wlh
# strides: [0.4, 0.4, 0.0] # if generate only 1 z_center, z_stride will be ignored
# offsets: [0.2, -39.8, -1.00] # origin_offset + strides / 2
# rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
# matched_threshold : 0.6
# unmatched_threshold : 0.45
# }
# }
sample_positive_fraction : -1
sample_size : 512
assign_per_class: true
}
WORKER 0 seed: 1577546776
WORKER 1 seed: 1577546777
/home/cxt/codetest/second.pytorch/second/core/preprocess.py:463: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C))
points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j]
/home/cxt/codetest/second.pytorch/second/core/preprocess.py:463: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C))
points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j]
/home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/npydecl.py:977: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C))
warnings.warn(NumbaPerformanceWarning(msg))
/home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/npydecl.py:977: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C))
warnings.warn(NumbaPerformanceWarning(msg))
/home/cxt/codetest/second.pytorch/second/core/geometry.py:272: NumbaWarning:
Compilation is falling back to object mode WITH looplifting enabled because Function "points_in_convex_polygon_jit" failed type inference due to: Invalid use of Function() with argument(s) of type(s): (array(float32, 3d, C), (slice, list(int64), slice))
parameterized
In definition 0:
All templates rejected with literals.
In definition 1:
All templates rejected without literals.
In definition 2:
All templates rejected with literals.
In definition 3:
All templates rejected without literals.
In definition 4:
All templates rejected with literals.
In definition 5:
All templates rejected without literals.
In definition 6:
All templates rejected with literals.
In definition 7:
All templates rejected without literals.
In definition 8:
All templates rejected with literals.
In definition 9:
All templates rejected without literals.
In definition 10:
All templates rejected with literals.
In definition 11:
All templates rejected without literals.
In definition 12:
TypeError: unsupported array index type list(int64) in (slice, list(int64), slice)
raised from /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/arraydecl.py:71
In definition 13:
TypeError: unsupported array index type list(int64) in (slice, list(int64), slice)
raised from /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/arraydecl.py:71
This error is usually caused by passing an argument of a type that is unsupported by the named function.
[1] During: typing of intrinsic-call at /home/cxt/codetest/second.pytorch/second/core/geometry.py (288)
File "second/core/geometry.py", line 288:
def points_in_convex_polygon_jit(points, polygon, clockwise=True):
I was use Titan V, and set batch size=5, num_workers=2.actully I tried batch_size =1 ,it wasn't work at all. Did anyone know how to solve this issue? my error as follow: `(second) cxt@ubuntu4-X299X-AORUS-MASTER:~/codetest/second.pytorch$ python second/pytorch/train.py train --config_path=second/configs/car.fhd.config --model_dir=second/model_saved /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning: Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_NVVM=/usr/local/cuda/nvvm/lib64/libnvvm.so.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup') warnings.warn(errors.NumbaWarning(msg)) /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning: Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup') warnings.warn(errors.NumbaWarning(msg)) /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/cuda/envvars.py:17: NumbaWarning: Environment variables with the 'NUMBAPRO' prefix are deprecated and consequently ignored, found use of NUMBAPRO_CUDA_DRIVER=/usr/lib/x86_64-linux-gnu/libcuda.so.
For more information about alternatives visit: ('http://numba.pydata.org/numba-doc/latest/cuda/overview.html', '#cudatoolkit-lookup') warnings.warn(errors.NumbaWarning(msg)) [ 41 1600 1408] num parameters: 69 False _amp_stash {'Car': 5} [-1] load 2207 Pedestrian database infos load 14357 Car database infos load 734 Cyclist database infos load 1297 Van database infos load 488 Truck database infos load 224 Tram database infos load 337 Misc database infos load 56 Person_sitting database infos After filter database: load 2207 Pedestrian database infos load 13442 Car database infos load 734 Cyclist database infos load 1297 Van database infos load 488 Truck database infos load 224 Tram database infos load 337 Misc database infos load 56 Person_sitting database infos feature_map_size [1, 200, 176] remain number of infos: 3712 feature_map_size [1, 200, 176] remain number of infos: 3769 model: { second: { network_class_name: "VoxelNet" voxel_generator { point_cloud_range : [0, -40, -3, 70.4, 40, 1]
point_cloud_range : [0, -32.0, -3, 52.8, 32.0, 1]
} }
train_input_reader: { dataset: { dataset_class_name: "KittiDataset" kitti_info_path: "/home/cxt/Kitti/object/kitti_infos_train.pkl" kitti_root_path: "/home/cxt/Kitti/object" }
batch_size: 6 preprocess: { max_number_of_voxels: 17000 shuffle_points: true num_workers: 2 groundtruth_localization_noise_std: [1.0, 1.0, 0.5]
groundtruth_rotation_uniform_noise: [-0.3141592654, 0.3141592654]
} }
train_config: { optimizer: { adam_optimizer: { learning_rate: { one_cycle: { lr_max: 2.25e-3 moms: [0.95, 0.85] div_factor: 10.0 pct_start: 0.4 } } weight_decay: 0.01 } fixed_weight_decay: true use_moving_average: false }
steps: 99040 # 1238 * 120
steps: 49520 # 619 * 80
steps: 30950 # 619 * 80
steps_per_eval: 3095 # 619 * 5
steps: 23200 # 464 50 steps_per_eval: 2320 # 619 5
save_checkpoints_secs : 1800 # half hour save_summary_steps : 10 enable_mixed_precision: false loss_scale_factor: -1 clear_metrics_every_epoch: true }
eval_input_reader: { dataset: { dataset_class_name: "KittiDataset" kitti_info_path: "/home/cxt/Kitti/object/kitti_infos_val.pkl"
kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_test.pkl"
} batch_size: 6 preprocess: { max_number_of_voxels: 40000 shuffle_points: false num_workers: 2 anchor_area_threshold: -1 remove_environment: false } }
WORKER 0 seed: 1577546776 WORKER 1 seed: 1577546777 /home/cxt/codetest/second.pytorch/second/core/preprocess.py:463: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C)) points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j] /home/cxt/codetest/second.pytorch/second/core/preprocess.py:463: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C)) points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j] /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/npydecl.py:977: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C)) warnings.warn(NumbaPerformanceWarning(msg)) /home/cxt/anaconda3/envs/second/lib/python3.6/site-packages/numba/typing/npydecl.py:977: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (array(float32, 2d, A), array(float32, 2d, C)) warnings.warn(NumbaPerformanceWarning(msg)) /home/cxt/codetest/second.pytorch/second/core/geometry.py:272: NumbaWarning: Compilation is falling back to object mode WITH looplifting enabled because Function "points_in_convex_polygon_jit" failed type inference due to: Invalid use of Function() with argument(s) of type(s): (array(float32, 3d, C), (slice, list(int64), slice))
File "second/core/geometry.py", line 288: def points_in_convex_polygon_jit(points, polygon, clockwise=True):