=============== Argument ===============
saved_dir: /home/{my_name}/fastertransformer_backend/all_models/bert/fastertransformer/1/
in_file: bert-base-uncased/
training_tensor_para_size: 1
infer_tensor_para_size: 2
processes: 4
weight_data_type: fp32
========================================
Some weights of the model checkpoint at bert-base-uncased/ were not used when initializing BertModel: ['cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING] cannot convert key 'embeddings.word_embeddings.weight'
[WARNING] cannot convert key 'embeddings.position_embeddings.weight'
[WARNING] cannot convert key 'embeddings.token_type_embeddings.weight'
[WARNING] cannot convert key 'embeddings.LayerNorm.weight'
[WARNING] cannot convert key 'embeddings.LayerNorm.bias'
[WARNING] cannot convert key 'pooler.dense.weight'
[WARNING] cannot convert key 'pooler.dense.bias'
Description
branch:
v1.4
docker version:22.12
huggingface_bert_convert.py
can't convert some keyResponse:
Reproduced Steps
2.
3.