$ curl -X POST localhost:8000/v2/models/tensorrt_llm/generate_stream -H "Content-Type: application/json" -d '{"input_ids": [1,2,3], "input_lengths": [3], "request_output_len": [3], "streaming": true}'
{"error":"Unable to parse 'data': Shape does not match true shape of 'data' field"}
This command also doesn't work:
$ curl -X POST localhost:8000/v2/models/tensorrt_llm/generate_stream -H "Content-Type: application/json" -d '{"input_ids": [[1],[2],[3]], "input_lengths": [3], "request_output_len": [3], "streaming": true}'
{"error":"Unable to parse 'data': Shape does not match true shape of 'data' field"}
System Info
This issue is not related to the system.
Who can help?
@byshiue @schetlur-nv
Information
Tasks
examples
folder (such as GLUE/SQuAD, ...)Reproduction
curl
command like this:Expected behavior
return outputs with
output_ids
, ...actual behavior
an error occurs:
Here is a log:
additional notes
I am trying to use only
tensorrt_llm
model in inflight_batcher_llm. Here is my status.I set
dims
ofinput_ids
to-1
(I don't change from default value), and mytensorrt_llm
model's config.pbtxt is here.config.pbtxt
``` name: "tensorrt_llm" backend: "tensorrtllm" max_batch_size: 1 model_transaction_policy { decoupled: true } dynamic_batching { preferred_batch_size: [ 1 ] max_queue_delay_microseconds: 0 default_queue_policy: { max_queue_size: 0 } } input [ { name: "input_ids" data_type: TYPE_INT32 dims: [ -1 ] allow_ragged_batch: true }, { name: "input_lengths" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } }, { name: "request_output_len" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } }, { name: "draft_input_ids" data_type: TYPE_INT32 dims: [ -1 ] optional: true allow_ragged_batch: true }, { name: "decoder_input_ids" data_type: TYPE_INT32 dims: [ -1 ] optional: true allow_ragged_batch: true }, { name: "decoder_input_lengths" data_type: TYPE_INT32 dims: [ 1 ] optional: true reshape: { shape: [ ] } }, { name: "draft_logits" data_type: TYPE_FP32 dims: [ -1, -1 ] optional: true allow_ragged_batch: true }, { name: "draft_acceptance_threshold" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "end_id" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "pad_id" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "stop_words_list" data_type: TYPE_INT32 dims: [ 2, -1 ] optional: true allow_ragged_batch: true }, { name: "bad_words_list" data_type: TYPE_INT32 dims: [ 2, -1 ] optional: true allow_ragged_batch: true }, { name: "embedding_bias" data_type: TYPE_FP32 dims: [ -1 ] optional: true allow_ragged_batch: true }, { name: "beam_width" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "temperature" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "runtime_top_k" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "runtime_top_p" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "runtime_top_p_min" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "runtime_top_p_decay" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "runtime_top_p_reset_ids" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "len_penalty" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "early_stopping" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "repetition_penalty" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "min_length" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "beam_search_diversity_rate" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "presence_penalty" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "frequency_penalty" data_type: TYPE_FP32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "random_seed" data_type: TYPE_UINT64 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "return_log_probs" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "return_context_logits" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "return_generation_logits" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "stop" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "streaming" data_type: TYPE_BOOL dims: [ 1 ] reshape: { shape: [ ] } optional: true }, { name: "prompt_embedding_table" data_type: TYPE_FP16 dims: [ -1, -1 ] optional: true allow_ragged_batch: true }, { name: "prompt_table_extra_ids" data_type: TYPE_UINT64 dims: [ -1 ] optional: true allow_ragged_batch: true }, { name: "prompt_vocab_size" data_type: TYPE_INT32 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, # the unique task ID for the given LoRA. # To perform inference with a specific LoRA for the first time `lora_task_id` `lora_weights` and `lora_config` must all be given. # The LoRA will be cached, so that subsequent requests for the same task only require `lora_task_id`. # If the cache is full the oldest LoRA will be evicted to make space for new ones. An error is returned if `lora_task_id` is not cached. { name: "lora_task_id" data_type: TYPE_UINT64 dims: [ 1 ] reshape: { shape: [ ] } optional: true }, # weights for a lora adapter shape [ num_lora_modules_layers, D x Hi + Ho x D ] # where the last dimension holds the in / out adapter weights for the associated module (e.g. attn_qkv) and model layer # each of the in / out tensors are first flattened and then concatenated together in the format above. # D=adapter_size (R value), Hi=hidden_size_in, Ho=hidden_size_out. { name: "lora_weights" data_type: TYPE_FP16 dims: [ -1, -1 ] optional: true allow_ragged_batch: true }, # module identifier (same size a first dimension of lora_weights) # See LoraModule::ModuleType for model id mapping # # "attn_qkv": 0 # compbined qkv adapter # "attn_q": 1 # q adapter # "attn_k": 2 # k adapter # "attn_v": 3 # v adapter # "attn_dense": 4 # adapter for the dense layer in attention # "mlp_h_to_4h": 5 # for llama2 adapter for gated mlp layer after attention / RMSNorm: up projection # "mlp_4h_to_h": 6 # for llama2 adapter for gated mlp layer after attention / RMSNorm: down projection # "mlp_gate": 7 # for llama2 adapter for gated mlp later after attention / RMSNorm: gate # # last dim holds [ module_id, layer_idx, adapter_size (D aka R value) ] { name: "lora_config" data_type: TYPE_INT32 dims: [ -1, 3 ] optional: true allow_ragged_batch: true } ] output [ { name: "output_ids" data_type: TYPE_INT32 dims: [ -1, -1 ] }, { name: "sequence_length" data_type: TYPE_INT32 dims: [ -1 ] }, { name: "cum_log_probs" data_type: TYPE_FP32 dims: [ -1 ] }, { name: "output_log_probs" data_type: TYPE_FP32 dims: [ -1, -1 ] }, { name: "context_logits" data_type: TYPE_FP32 dims: [ -1, -1 ] }, { name: "generation_logits" data_type: TYPE_FP32 dims: [ -1, -1, -1 ] }, { name: "batch_index" data_type: TYPE_INT32 dims: [ 1 ] } ] instance_group [ { count: 1 kind : KIND_CPU } ] parameters: { key: "max_beam_width" value: { string_value: "${max_beam_width}" } } parameters: { key: "FORCE_CPU_ONLY_INPUT_TENSORS" value: { string_value: "no" } } parameters: { key: "gpt_model_type" value: { string_value: "inflight_fused_batching" } } parameters: { key: "gpt_model_path" value: { string_value: "/data/triton-server-engines/llama-3-8b-engine/" } } parameters: { key: "encoder_model_path" value: { string_value: "${encoder_engine_dir}" } } parameters: { key: "max_tokens_in_paged_kv_cache" value: { string_value: "${max_tokens_in_paged_kv_cache}" } } parameters: { key: "max_attention_window_size" value: { string_value: "${max_attention_window_size}" } } parameters: { key: "sink_token_length" value: { string_value: "${sink_token_length}" } } parameters: { key: "batch_scheduler_policy" value: { string_value: "${batch_scheduler_policy}" } } parameters: { key: "kv_cache_free_gpu_mem_fraction" value: { string_value: "${kv_cache_free_gpu_mem_fraction}" } } parameters: { key: "kv_cache_host_memory_bytes" value: { string_value: "${kv_cache_host_memory_bytes}" } } # kv_cache_onboard_blocks is for internal implementation. parameters: { key: "kv_cache_onboard_blocks" value: { string_value: "${kv_cache_onboard_blocks}" } } # enable_trt_overlap is deprecated and doesn't have any effect on the runtime # parameters: { # key: "enable_trt_overlap" # value: { # string_value: "${enable_trt_overlap}" # } # } parameters: { key: "exclude_input_in_output" value: { string_value: "true" } } parameters: { key: "cancellation_check_period_ms" value: { string_value: "${cancellation_check_period_ms}" } } parameters: { key: "stats_check_period_ms" value: { string_value: "${stats_check_period_ms}" } } parameters: { key: "iter_stats_max_iterations" value: { string_value: "${iter_stats_max_iterations}" } } parameters: { key: "request_stats_max_iterations" value: { string_value: "${request_stats_max_iterations}" } } parameters: { key: "enable_kv_cache_reuse" value: { string_value: "true" } } parameters: { key: "normalize_log_probs" value: { string_value: "${normalize_log_probs}" } } parameters: { key: "enable_chunked_context" value: { string_value: "false" } } parameters: { key: "gpu_device_ids" value: { string_value: "${gpu_device_ids}" } } parameters: { key: "participant_ids" value: { string_value: "${participant_ids}" } } parameters: { key: "lora_cache_optimal_adapter_size" value: { string_value: "${lora_cache_optimal_adapter_size}" } } parameters: { key: "lora_cache_max_adapter_size" value: { string_value: "${lora_cache_max_adapter_size}" } } parameters: { key: "lora_cache_gpu_memory_fraction" value: { string_value: "${lora_cache_gpu_memory_fraction}" } } parameters: { key: "lora_cache_host_memory_bytes" value: { string_value: "${lora_cache_host_memory_bytes}" } } parameters: { key: "decoding_mode" value: { string_value: "${decoding_mode}" } } parameters: { key: "executor_worker_path" value: { string_value: "/opt/tritonserver/backends/tensorrtllm/trtllmExecutorWorker" } } parameters: { key: "medusa_choices" value: { string_value: "${medusa_choices}" } } parameters: { key: "gpu_weights_percent" value: { string_value: "${gpu_weights_percent}" } } parameters: { key: "enable_context_fmha_fp32_acc" value: { string_value: "${enable_context_fmha_fp32_acc}" } } parameters: { key: "multi_block_mode" value: { string_value: "${multi_block_mode}" } } ```When I post via curl command, an error occurs:
This command also doesn't work:
However, when I set
input_ids
to[1]
, it works:How can I pass multiple input token ids via HTTP request ?