Closed fanbowen232218094636-spec closed 2 years ago
Hi, thanks for the comments.
About your division of data sets Txt file and train txt,test. Txt file is how to do it? --> We follow the data set split as previous UDA works. DomainNet comes from its author (see http://ai.bu.edu/M3SDA/), where models are trained on _train split, and evaluated on _test split. For other datasets, models are trained and evaluated on the same split.
I am running main ViT baseline. office_ home. The following error is reported during py. --> I have updated the code to fix this issue. It runs normally on our server now.
Thank you very much for your reply. I'll continue to implement your code now, and hope to get through as soon as possible.
Hello, nice to read your article! However, when I try to realize the combination of vision transformer and confrontation domain adaptation, I don't know a few points:
About your division of data sets Txt file and train txt,test. Txt file is how to do it?
I am running main ViT baseline. office_ home. The following error is reported during py. Do you know this?
D:\Anaconda3\envs\torch1.10\python.exe D:/Codes/SSRT-master/main_ViT_baseline.office_home.py 2022-07-05 21.07.23:INFO: ++++++++++++++++++++++++++++++++++++++++++++++++
--model=ViTgrl --base_net=vit_base_patch16_224 --gpu=0 --timestamp=2022-07-05_21.07.23 --dataset=Office-Home --source_path=data/Product.txt --target_path=data/Clipart.txt --batch_size=32 --lr=0.004 --train_epoch=20 --save_epoch=20 --eval_epoch=5 --iters_per_epoch=1000 --use_tensorboard=False --use_file_logger=True --log_dir=logs/ViTgrl
++++++++++++++++++++++++++++++++++++++++++++++++
@LAPTOP-D8NJGV5D:29324
2022-07-05 21.07.23:INFO:Namespace(adap_adjust_L=4, adap_adjust_T=1000, adap_adjust_append_last_subintervals=True, adap_adjust_restore_optimizor=False, base_net='vit_base_patch16_224', batch_size=32, bottleneck_dim=2048, center_crop=False, class_num=65, classification_loss_weight=1.0, dataset='Office-Home', domain_loss_weight=1.0, eval_epoch=5, eval_source=True, eval_target=True, eval_test=True, gpu_id='0', iters_per_epoch=1000, log_dir='logs/ViTgrl', lr=0.004, lr_momentum=0.9, lr_scheduler_decay_rate=0.75, lr_scheduler_gamma=0.001, lr_scheduler_rate=1, lr_wd=0.0005, mi_loss_weight=0.0, model='ViTgrl', num_workers=4, rand_aug=False, random_resized_crop=False, random_seed=0, restore_checkpoint=None, save_checkpoint=True, save_epoch=20, source_path='data/Product.txt', sr_alpha=0.3, sr_epsilon=0.4, sr_layers=[0, 4, 8], sr_loss_p=0.5, sr_loss_weight=0.2, target_path='data/Clipart.txt', tensorboard_dir='tensorboard', test_path=None, timestamp='2022-07-05_21.07.23', train_epoch=20, use_bottleneck=True, use_file_logger=True, use_safe_training=False, use_tensorboard=False, writer=None) Traceback (most recent call last): File "D:\Codes\SSRT-master\trainer\train.py", line 183, in train_main model_instance = Model(base_net=args.base_net, bottleneck_dim=args.bottleneck_dim, use_gpu=True, class_num=args.class_num, args=args) File "D:\Codes\SSRT-master\model\ViTgrl.py", line 60, in init self.c_net = ViTgrlNet(base_net, args.use_bottleneck, bottleneck_dim, class_num, args) File "D:\Codes\SSRT-master\model\ViTgrl.py", line 13, in init self.base_network = vit_model[base_net](pretrained=True, args=args, VisionTransformerModule=VT) File "D:\Codes\SSRT-master\model\ViT.py", line 268, in vit_base_patch16_224 model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, model_kwargs) File "D:\Codes\SSRT-master\model\helpers.py", line 381, in _create_vision_transformer model = model_cls(img_size=img_size, num_classes=num_classes, distilled=distilled, kwargs) TypeError: init() got an unexpected keyword argument 'args'
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "D:/Codes/SSRT-master/main_ViT_baseline.office_home.py", line 45, in
train_main(args, header('\n\t\t'.join(args), hostName, pid))
File "D:\Codes\SSRT-master\trainer\train.py", line 185, in train_main
raise NotImplementedError('Unsupported model')
NotImplementedError: Unsupported model
Process finished with exit code 1