Closed caoyifeng001 closed 3 years ago
您好:
使用中文問答也是可以的。 想請問您遇到這個狀況使用是自己寫的 inference 程式碼還是我 repo 內的呢?
如果還有相關問題也歡迎一起討論 謝謝!
你好,感谢你的回复。 我是把你的代码code 这一行删掉得到的结果,我知道这是错误的。我想请问你用batchsize=20的情况下inference 验证集需要多少时间,我这边1小时多还没有的到结果,这样正常吗?
您好:
依照我之前的經驗,RandLA-Net 確實在 inference 時因為 voting prediction (也就是您刪除的部份) 而花上很多時間,然而,刪除該步驟又會造成如您上面所提到的 performance 大幅下降。個人認為如果工作站電腦不是很好的話一個多小時是有可能的,然而如果你有 real-time 需求的話,也許你可以嘗試其他的 model backbone 或者與原作者討論。謝謝!
感谢回复, 训练时验证集的iou和用test_SemanticKITTI.py得到的iou差距大吗
應該是還好,我之前跑的印象就是50多一些。
@tsunghan-mama @caoyifeng001 您好,抱歉隔了这么久再次在这下面提问,我疑惑的是训练时的eval似乎没有进行voting prediction,但为什么训练eval时可以取得50多的iou而测试时必须要voting呢? 感谢!
你好,训练时有53.9的iou,但是测试完用evaluate_SemanticKITTI.py 估计时却是如下情况。测试显示的iou和最后的差距大吗
`validation set: Acc avg 0.052 IoU avg 0.003 IoU class 1 [car] = 0.052 IoU class 2 [bicycle] = 0.000 IoU class 3 [motorcycle] = 0.000 IoU class 4 [truck] = 0.000 IoU class 5 [other-vehicle] = 0.000 IoU class 6 [person] = 0.001 IoU class 7 [bicyclist] = 0.000 IoU class 8 [motorcyclist] = 0.000 IoU class 9 [road] = 0.000 IoU class 10 [parking] = 0.002 IoU class 11 [sidewalk] = 0.000 IoU class 12 [other-ground] = 0.000 IoU class 13 [building] = 0.000 IoU class 14 [fence] = 0.000 IoU class 15 [vegetation] = 0.000 IoU class 16 [trunk] = 0.000 IoU class 17 [terrain] = 0.000 IoU class 18 [pole] = 0.000 IoU class 19 [traffic-sign] = 0.000
0.052,0.000,0.000,0.000,0.000,0.001,0.000,0.000,0.000,0.002,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.003,0.052` 不知道用中文简体字提问能看懂吗。