Added the python exposure of the function "setConstantPerObservableAndLinkEndsWeights". This allows for adding constant
weights to observations depending on the observable type and link-ends for the covariance analysis.
Note: the python syntax for this function is different from other functions used to define the weight matrix. The other functions require a dictionary input, for example:
weights_per_observable = {range_type: noise_level} # a dictionary of noise for each range type
pod_input.set_constant_weight_per_observable(weights_per_observable)
Added the python exposure of the function "setConstantPerObservableAndLinkEndsWeights". This allows for adding constant weights to observations depending on the observable type and link-ends for the covariance analysis.
Python example:
Note: the python syntax for this function is different from other functions used to define the weight matrix. The other functions require a dictionary input, for example: