Closed ANTAGNIST closed 1 year ago
This seems to be a mismatch of the installed version, I can recommend to try it on colab: https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/master/intro-teaser.ipynb
And then you could adapt your local installation accordingly.
My anaconda list is followed:
I copied the following code in page6:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# X-Data
N = 200
X = np.random.random(N)
# Generation Y-Data
sign = (- np.ones((N,)))**np.random.randint(2,size=N)
Y = np.sqrt(X) * sign
# Neural network
act = tf.keras.layers.ReLU()
nn_sv = tf.keras.models.Sequential([
tf.keras.layers.Dense(10, activation=act),
tf.keras.layers.Dense(10, activation=act),
tf.keras.layers.Dense(1,activation='linear')
])
# Loss function
loss_sv = tf.keras.losses.MeanSquaredError()
optimizer_sv = tf.keras.optimizers.Adam(learning_rate=0.001)
nn_sv.compile(optimizer=optimizer_sv, loss=loss_sv)
# Training
results_sv = nn_sv.fit(X, Y, epochs=5, batch_size= 5, verbose=1)
But when I runned the code and it runned to Epoch of 1/5:# Training
results_sv = nn_sv.fit(X, Y, epochs=5, batch_size= 5, verbose=1)
The following quitions occured: Output exceeds the [size limit]. Open the full output data [in a text editor] ValueError Traceback (most recent call last) d:\code\pyMyself\pinn\donw.ipynb Cell 8 in <cell line: 2>() 1 # Training ----> 2 results_sv = nn_sv.fit(X, Y, epochs=5, batch_size= 5, verbose=1)File d:\Ana\Anaconda3\envs\deepdeS\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 #
tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tbFile ~\AppData\Local\Temp__autograph_generated_filelji_gey6.py:15, in outer_factory..inner_factory..tftrain_function(iterator)
13 try:
14 doreturn = True
---> 15 retval = ag__.converted_call(ag.ld(step_function), (ag.ld(self), ag.ld(iterator)), None, fscope)
16 except:
17 do_return = False
ValueError: in user code:
... Call arguments received by layer "sequential_2" " f"(type Sequential): • inputs=tf.Tensor(shape=(5,), dtype=float32) • training=True • mask=None
Could you please tell me what kind of step I did wrong? Thank you very much!