Open Rich2333 opened 2 years ago
Thanks for reaching out. Can you provide more details? What is your train/test data? What are other hyperparameters?
My train/test data is crystal structures downloaded from Materials Project database (using MPRester API). In the case of using my own trained model, I use same data to train and predict. And I'm quite confused that the prediction MAE(e.g. 5.977) is 100 times more than the training MAE(e.g. 0.0586).
As for parameters, I think I didn't change any default ones other than epochs:
python main.py --epochs 500 --train-ratio 0.6 --val-ratio 0.2 --test-ratio 0.2 mp/
python predict.py E:/cgcnn-master/trained_files/from_cmd/mp-2/mp_model_best.pth.tar mp/
And for the size mismatch problem, I'm wondering if my environment is different from the environment of pre-trained models.
The packages in my vritual environment are listed as follows:
#Name Version Build Channel
ase 3.22.1 pyhd8ed1ab_1 conda-forge
blas 2.114 mkl conda-forge
blas-devel 3.9.0 14_win64_mkl conda-forge
brotli 1.0.9 h8ffe710_7 conda-forge
brotli-bin 1.0.9 h8ffe710_7 conda-forge
brotlipy 0.7.0 py310he2412df_1004 conda-forge
bzip2 1.0.8 h8ffe710_4 conda-forge
ca-certificates 2021.10.8 h5b45459_0 conda-forge
certifi 2021.10.8 py310h5588dad_2 conda-forge
cffi 1.15.0 py310hcbf9ad4_0 conda-forge
cftime 1.6.0 py310h2873277_1 conda-forge
charset-normalizer 2.0.12 pyhd8ed1ab_0 conda-forge
click 8.1.3 py310h5588dad_0 conda-forge
colorama 0.4.4 pyh9f0ad1d_0 conda-forge
cryptography 36.0.2 py310ha857299_1 conda-forge
cudatoolkit 11.3.1 h59b6b97_2
curl 7.83.0 h789b8ee_0 conda-forge
cycler 0.11.0 pyhd8ed1ab_0 conda-forge
cython 0.29.28 py310h8a704f9_2 conda-forge
double-conversion 3.2.0 h0e60522_0 conda-forge
eigen 3.4.0 h2d74725_0 conda-forge
expat 2.4.8 h39d44d4_0 conda-forge
ffmpeg 4.3.1 ha925a31_0 conda-forge
flask 2.1.2 pyhd8ed1ab_1 conda-forge
fonttools 4.33.3 py310he2412df_0 conda-forge
freetype 2.10.4 h546665d_1 conda-forge
future 0.18.2 py310h5588dad_5 conda-forge
gl2ps 1.4.2 h0597ee9_0 conda-forge
glew 2.1.0 h39d44d4_2 conda-forge
hdf4 4.2.15 h0e5069d_3 conda-forge
hdf5 1.12.1 nompi_h2a0e4a3_104 conda-forge
icu 69.1 h0e60522_0 conda-forge
idna 3.3 pyhd8ed1ab_0 conda-forge
importlib-metadata 4.11.3 py310h5588dad_1 conda-forge
intel-openmp 2022.0.0 h57928b3_3663 conda-forge
itsdangerous 2.1.2 pyhd8ed1ab_0 conda-forge
jbig 2.1 h8d14728_2003 conda-forge
jinja2 3.1.2 pyhd8ed1ab_0 conda-forge
joblib 1.1.0 pyhd8ed1ab_0 conda-forge
jpeg 9e h8ffe710_1 conda-forge
jsoncpp 1.9.5 h2d74725_1 conda-forge
kiwisolver 1.4.2 py310h476a331_1 conda-forge
krb5 1.19.3 h1176d77_0 conda-forge
latexcodec 2.0.1 pyh9f0ad1d_0 conda-forge
lcms2 2.12 h2a16943_0 conda-forge
lerc 3.0 h0e60522_0 conda-forge
libblas 3.9.0 14_win64_mkl conda-forge
libbrotlicommon 1.0.9 h8ffe710_7 conda-forge
libbrotlidec 1.0.9 h8ffe710_7 conda-forge
libbrotlienc 1.0.9 h8ffe710_7 conda-forge
libcblas 3.9.0 14_win64_mkl conda-forge
libclang 13.0.1 default_h81446c8_0 conda-forge
libcurl 7.83.0 h789b8ee_0 conda-forge
libdeflate 1.10 h8ffe710_0 conda-forge
libffi 3.4.2 h8ffe710_5 conda-forge
libiconv 1.16 he774522_0 conda-forge
liblapack 3.9.0 14_win64_mkl conda-forge
liblapacke 3.9.0 14_win64_mkl conda-forge
libnetcdf 4.8.1 nompi_h1cc8e9d_102 conda-forge
libogg 1.3.4 h8ffe710_1 conda-forge
libpng 1.6.37 h1d00b33_2 conda-forge
libssh2 1.10.0 h680486a_2 conda-forge
libtheora 1.1.1 h8d14728_1005 conda-forge
libtiff 4.3.0 hc4061b1_3 conda-forge
libuv 1.43.0 h8ffe710_0 conda-forge
libwebp 1.2.2 h57928b3_0 conda-forge
libwebp-base 1.2.2 h8ffe710_1 conda-forge
libxcb 1.13 hcd874cb_1004 conda-forge
libxml2 2.9.14 hf5bbc77_0 conda-forge
libzip 1.8.0 hfed4ece_1 conda-forge
libzlib 1.2.11 h8ffe710_1014 conda-forge
loguru 0.6.0 py310h5588dad_1 conda-forge
lz4-c 1.9.3 h8ffe710_1 conda-forge
m2w64-gcc-libgfortran 5.3.0 6 conda-forge
m2w64-gcc-libs 5.3.0 7 conda-forge
m2w64-gcc-libs-core 5.3.0 7 conda-forge
m2w64-gmp 6.1.0 2 conda-forge
m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge
markupsafe 2.1.1 py310he2412df_1 conda-forge
matplotlib-base 3.5.2 py310h79a7439_0 conda-forge
mkl 2022.0.0 h0e2418a_796 conda-forge
mkl-devel 2022.0.0 h57928b3_797 conda-forge
mkl-include 2022.0.0 h0e2418a_796 conda-forge
monty 2022.4.26 pyhd8ed1ab_0 conda-forge
mpmath 1.2.1 pyhd8ed1ab_0 conda-forge
msys2-conda-epoch 20160418 1 conda-forge
munkres 1.1.4 pyh9f0ad1d_0 conda-forge
netcdf4 1.5.8 nompi_py310h5489b47_101 conda-forge
networkx 2.8 pyhd8ed1ab_0 conda-forge
numpy 1.22.3 py310hed7ac4c_2 conda-forge
openjpeg 2.4.0 hb211442_1 conda-forge
openssl 1.1.1o h8ffe710_0 conda-forge
packaging 21.3 pyhd8ed1ab_0 conda-forge
palettable 3.3.0 py_0 conda-forge
pandas 1.4.2 py310hf5e1058_1 conda-forge
pillow 9.1.0 py310h767b3fd_2 conda-forge
pip 22.0.4 pyhd8ed1ab_0 conda-forge
plotly 5.7.0 pyhd8ed1ab_0 conda-forge
proj 9.0.0 h1cfcee9_1 conda-forge
pthread-stubs 0.4 hcd874cb_1001 conda-forge
pugixml 1.11.4 h0e60522_0 conda-forge
pybtex 0.24.0 pyhd8ed1ab_2 conda-forge
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pymatgen 2022.4.26 py310h476a331_0 conda-forge
pyopenssl 22.0.0 pyhd8ed1ab_0 conda-forge
pyparsing 3.0.8 pyhd8ed1ab_0 conda-forge
pysocks 1.7.1 py310h5588dad_5 conda-forge
python 3.10.4 h9a09f29_0_cpython conda-forge
python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge
python_abi 3.10 2_cp310 conda-forge
pytorch 1.11.0 py3.10_cuda11.3_cudnn8_0 pytorch
pytorch-mutex 1.0 cuda pytorch
pytz 2022.1 pyhd8ed1ab_0 conda-forge
pyyaml 6.0 py310he2412df_4 conda-forge
qt 5.12.9 h556501e_6 conda-forge
requests 2.27.1 pyhd8ed1ab_0 conda-forge
ruamel.yaml 0.17.21 py310he2412df_1 conda-forge
ruamel.yaml.clib 0.2.6 py310he2412df_1 conda-forge
scikit-learn 1.0.2 py310h4dafddf_0 conda-forge
scipy 1.8.0 py310h33db832_1 conda-forge
setuptools 62.1.0 py310h5588dad_0 conda-forge
six 1.16.0 pyh6c4a22f_0 conda-forge
spglib 1.16.4 py310h2873277_0 conda-forge
sqlite 3.38.4 h8ffe710_0 conda-forge
sympy 1.10.1 py310h5588dad_0 conda-forge
tabulate 0.8.9 pyhd8ed1ab_0 conda-forge
tbb 2021.5.0 h2d74725_1 conda-forge
tbb-devel 2021.5.0 h2d74725_1 conda-forge
tenacity 8.0.1 pyhd8ed1ab_0 conda-forge
threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge
tk 8.6.12 h8ffe710_0 conda-forge
torchvision 0.12.0 py310_cu113 pytorch
tqdm 4.64.0 pyhd8ed1ab_0 conda-forge
typing_extensions 4.2.0 pyha770c72_1 conda-forge
tzdata 2022a h191b570_0 conda-forge
ucrt 10.0.20348.0 h57928b3_0 conda-forge
uncertainties 3.1.6 pyhd8ed1ab_0 conda-forge
unicodedata2 14.0.0 py310he2412df_1 conda-forge
urllib3 1.26.9 pyhd8ed1ab_0 conda-forge
utfcpp 3.2.1 h57928b3_0 conda-forge
vc 14.2 hb210afc_6 conda-forge
vs2015_runtime 14.29.30037 h902a5da_6 conda-forge
vtk 9.1.0 qt_py310h99a8838_207 conda-forge
werkzeug 2.1.2 pyhd8ed1ab_1 conda-forge
wheel 0.37.1 pyhd8ed1ab_0 conda-forge
win32_setctime 1.1.0 pyhd8ed1ab_0 conda-forge
win_inet_pton 1.1.0 py310h5588dad_4 conda-forge
xorg-libxau 1.0.9 hcd874cb_0 conda-forge
xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge
xz 5.2.5 h62dcd97_1 conda-forge
yaml 0.2.5 h8ffe710_2 conda-forge
zipp 3.8.0 pyhd8ed1ab_0 conda-forge
zlib 1.2.11 h8ffe710_1014 conda-forge
zstd 1.5.2 h6255e5f_0 conda-forge
Dear author, I have trained 40000+ cifs and I have set “tarin size 0.8”,“epoch 1000”,I think I will get the same result of yours ,but I just get the MAE (0.049).Only 300~400 cifs of all cifs are different from yours.Is my result correct within the margin of error?
yeah,i also found this problem
I know, it’s because there are differences in prediction codes between models trained using GPU and models trained using CPU. You can go to some tutorials online and it’s easier to solve.
Hi,
When I try to load pre-trained models to test predict.py, I was noticed as follows:
python predict.py pre-trained/final-energy-per-atom.pth.tar mp/ => loading model params 'pre-trained/final-energy-per-atom.pth.tar' => loaded model params 'pre-trained/final-energy-per-atom.pth.tar' => loading model 'pre-trained/final-energy-per-atom.pth.tar' Traceback (most recent call last): File "E:\cgcnn-master\predict.py", line 298, in
main()
File "E:\cgcnn-master\predict.py", line 94, in main
model.load_state_dict(checkpoint['state_dict'])
File "C:\ProgramData\Anaconda3\envs\cgcnn1\lib\site-packages\torch\nn\modules\module.py", line 1497, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for CrystalGraphConvNet:
size mismatch for convs.0.fc_full.weight: copying a param with shape torch.Size([128, 169]) from checkpoint, the shape in current model is torch.Size([128, 179]).
size mismatch for convs.1.fc_full.weight: copying a param with shape torch.Size([128, 169]) from checkpoint, the shape in current model is torch.Size([128, 179]).
size mismatch for convs.2.fc_full.weight: copying a param with shape torch.Size([128, 169]) from checkpoint, the shape in current model is torch.Size([128, 179]).
size mismatch for convs.3.fc_full.weight: copying a param with shape torch.Size([128, 169]) from checkpoint, the shape in current model is torch.Size([128, 179]).
btw, then I tried to train my own model and use it to predict. The errors above didn't show up, but I got a TOO large MAE.
(cgcnn) E:\cgcnn-master>python predict.py E:\cgcnn-master\trained_files\from_cmd\mp-2\mp_model_best.pth.tar mp/ => loading model params 'E:\cgcnn-master\trained_files\from_cmd\mp-2\mp_model_best.pth.tar' => loaded model params 'E:\cgcnn-master\trained_files\from_cmd\mp-2\mp_model_best.pth.tar' => loading model 'E:\cgcnn-master\trained_files\from_cmd\mp-2\mp_model_best.pth.tar' => loaded model 'E:\cgcnn-master\trained_files\from_cmd\mp-2\mp_model_best.pth.tar' (epoch 484, validation 0.05862389877438545) C:\ProgramData\Anaconda3\envs\cgcnn\lib\site-packages\pymatgen\io\cif.py:1155: UserWarning: Issues encountered while parsing CIF: Some fractional coordinates rounded to ideal values to avoid issues with finite precision. warnings.warn("Issues encountered while parsing CIF: " + "\n".join(self.warnings)) Test: [0/74] Time 26.633 (26.633) Loss inf (inf) MAE 5.977 (5.977) Test: [10/74] Time 24.787 (27.052) Loss inf (inf) MAE 6.005 (6.013) Test: [20/74] Time 28.383 (28.096) Loss inf (inf) MAE 5.941 (6.010) Test: [30/74] Time 31.305 (28.518) Loss inf (inf) MAE 6.081 (6.008) Test: [40/74] Time 30.491 (29.037) Loss inf (inf) MAE 5.860 (6.010) Test: [50/74] Time 35.822 (29.651) Loss inf (inf) MAE 6.035 (6.008) Test: [60/74] Time 33.488 (30.191) Loss inf (inf) MAE 6.033 (6.012) Test: [70/74] Time 34.823 (30.565) Loss inf (inf) MAE 5.955 (6.008) ** MAE 6.009
Thanks for your attention!