Open u5943321 opened 3 years ago
want solve
f = g
from the thm
(A : ob), (B : ob), (C : ob), (f : B -> C), (g : B -> C), (i : A -> B)
|- isiso(i) & f o i = g o i ==> f = g: thm
TODO: bug match_mp if use match_mp_tac o_iso_eq_eq, then # Exception- ERR "VALIDInvalid tactic: theorem has extra variable involved i" raised
The i is the i:A->B, not the one from 0, and i is not matched anywhere.
X areiso Y & Y areiso Y
Let A areiso 0 ==> ~EXISTS (x : 1 -> A). T(): thm
work for goal F
Transform ALL B. areiso(B?, 0) ==> ALL A. ALL (f : A? -> B?). areiso(A?, 0) into ALL B. ALL A. areiso(B?, 0) /\ ?f:A->B. T ==> areiso(A,0)
X areiso Y & Y areiso Y
Work for chained implication like:
f o h = g o h ==> eqa(f, g) o x0 = h ==> x0 = eqinduce(f, g, h): thm