Closed VikashPR closed 1 year ago
This is the fork of the rPPG-Toolkit which I am using. https://github.com/VikashPR/rPPG-Toolbox
I want to run execute EfficientPhys algorithm with UBFC datasets and with our custom datasets for research purpose.
Hi @VikashPR,
I believe you have figured out what the issue was in your case based on recent commits to your fork that you linked. As a result, I'll close this issue and note that the current iteration of the toolbox does not support CPU-only training or inference of any kind. We plan to support CPU-only inference in the near future, and possibly CPU-only training though I personally think that will be much, much less likely due to its lack of value to the research community at large which typically improves the state-of-the-art using GPUs and deep learning techniques.
Error While running the below command
Command executed in terminal
python main.py --config_file ./configs/infer_configs/PURE_UBFC-rPPG_EFFICIENTPHYS.yaml
Terminal output
=> Merging a config file from ./configs/infer_configs/PURE_UBFC-rPPG_EFFICIENTPHYS.yaml Configuration: => Merging a config file from ./configs/infer_configs/PURE_UBFC-rPPG_EFFICIENTPHYS.yaml Configuration:
Initializing UBFC-rPPG dataset... data_path: RawData Preprocessing dataset... 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [01:07<00:00, 33.54s/it] Total Number of raw files preprocessed: 2
Cached Data Path PreprocessedData/UBFC-rPPG_SizeW72_SizeH72_ClipLength180_DataTypeStandardized_DataAugNone_LabelTypeDiffNormalized_Crop_faceTrue_Large_boxTrue_Large_size1.5_Dyamic_DetFalse_det_len30_Median_face_boxTrue
File List Path PreprocessedData/DataFileLists/UBFC-rPPG_SizeW72_SizeH72_ClipLength180_DataTypeStandardized_DataAugNone_LabelTypeDiffNormalized_Crop_faceTrue_Large_boxTrue_Large_size1.5_Dyamic_DetFalse_det_len30_Median_face_boxTrue_0.0_1.0.csv test Preprocessed Dataset Length: 18
===Testing=== Testing uses pretrained model! Traceback (most recent call last): File "main.py", line 288, in
test(config, data_loader_dict)
File "main.py", line 95, in test
model_trainer.test(data_loader_dict)
File "/Users/vikashpr/Dev/Python/rPPG-Toolbox/neuralmethods/trainer/EfficientPhysTrainer.py", line 171, in test
for , test_batch in enumerate(data_loader['test']):
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 633, in next
data = self._next_data()
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1345, in _next_data
return self._process_data(data)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data
data.reraise()
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/_utils.py", line 644, in reraise
raise exception
RuntimeError: Caught RuntimeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop
data = fetcher.fetch(index)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 54, in fetch
return self.collate_fn(data)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 265, in default_collate
return collate(batch, collate_fn_map=default_collate_fn_map)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 142, in collate
return [collate(samples, collate_fn_map=collate_fn_map) for samples in transposed] # Backwards compatibility.
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 142, in
return [collate(samples, collate_fn_map=collate_fn_map) for samples in transposed] # Backwards compatibility.
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 119, in collate
return collate_fn_map[elem_type](batch, collate_fn_map=collate_fn_map)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 171, in collate_numpy_array_fn
return collate([torch.as_tensor(b) for b in batch], collate_fn_map=collate_fn_map)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 119, in collate
return collate_fn_map[elem_type](batch, collate_fn_map=collate_fn_map)
File "/Users/vikashpr/anaconda3/envs/rpg-toolbox/lib/python3.8/site-packages/torch/utils/data/_utils/collate.py", line 161, in collate_tensorfn
out = elem.new(storage).resize(len(batch), *list(elem.size()))
RuntimeError: Trying to resize storage that is not resizable
I am using MacBook Air 2017 i5 5th generation. My system don't have CUDA. Please help me resolve this error.