Open udaynaik opened 6 years ago
@udaynaik : How about use a string in format of CSV as like "value1,value2,value3"? And then in your prediction function, you could parse and convert it to an object of DataFrame.
@withsmilo i tried using json string but the container hangs at 18-09-19:12:08:06 INFO [clipper_admin.py:458] Pushing model Docker image to loan-model:1 18-09-19:12:08:08 INFO [docker_container_manager.py:257] Found 0 replicas for loan-model:1. Adding 1
Here is my function which works if simply return the "inp":
def test_func(inp):
#return inp # works
df = pd.read_json(inp, orient='columns')
preds = lr_model.predict(df)
return [str(p) for p in preds]
My inp is: '[{\"LIMIT_BAL\":200000,\"SEX\":2,\"EDUCATION\":1,\"MARRIAGE\":2,\"AGE\":30},{\"LIMIT_BAL\":150000,\"SEX\":2,\"EDUCATION\":3,\"MARRIAGE\":1,\"AGE\":53}]'
sent via curl:
curl -X POST --header "Content-Type:application/json" -d '{"input": "[{\"LIMIT_BAL\":200000,\"SEX\":2,\"EDUCATION\":1,\"MARRIAGE\":2,\"AGE\":30},{\"LIMIT_BAL\":150000,\"SEX\":2,\"EDUCATION\":3,\"MARRIAGE\":1,\"AGE\":53}]"}' 127.0.0.1:1337/hello-world/predict
I am using the following to register:
x_train, x_test, y_train, y_test = train_test_split(df, target, test_size=5)
lr_model = linear_model.LogisticRegression()
lr_model.fit(x_train, y_train)
cl = ClipperConnection(DockerContainerManager())
cl.register_application(name="example", input_type="strings", default_output="slow", slo_micros=100000)
python_deployer.deploy_python_closure(cl, name="loan", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas","sklearn","simplejson"])
cl.link_model_to_app(app_name="example", model_name="loan")
@udaynaik : This sample code is working for me. :)
from clipper_admin import ClipperConnection, DockerContainerManager
from clipper_admin.deployers import python as python_deployer
clipper_conn = ClipperConnection(DockerContainerManager())
clipper_conn.start_clipper()
import pandas as pd
def test_func(inp):
# inp is a list of string
def pred(i):
df = pd.read_json(i, orient='columns')
# return simple value
return df['LIMIT_BAL'].tolist()[0]
return [str(pred(i)) for i in inp]
clipper_conn.register_application(name="udaynaik-test", input_type="strings", default_output="default", slo_micros=100000)
python_deployer.deploy_python_closure(clipper_conn, name="udaynaik-model", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas"])
clipper_conn.link_model_to_app(app_name="udaynaik-test", model_name="udaynaik-model")
import requests, json
headers = {"Content-type": "application/json"}
input_data = "[{\"LIMIT_BAL\":200000,\"SEX\":2,\"EDUCATION\":1,\"MARRIAGE\":2,\"AGE\":30},{\"LIMIT_BAL\":150000,\"SEX\":2,\"EDUCATION\":3,\"MARRIAGE\":1,\"AGE\":53}]"
requests.post("http://localhost:1337/udaynaik-test/predict", headers=headers, data=json.dumps({"input": input_data})).json()
Thanks ..looks hopeful but interestingly @withsmilo I cut/paste same code and I get this error. I am using clipper-admin==0.3.0. Docker engine on Mac: 18.06.1-ce on Mac OS 10.12.6...
18-09-19:23:21:34 INFO [docker_container_manager.py:257] Found 0 replicas for udaynaik-model:1. Adding 1
Traceback (most recent call last):
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connection.py", line 141, in _new_conn
(self.host, self.port), self.timeout, **extra_kw)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/util/connection.py", line 83, in create_connection
raise err
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/util/connection.py", line 73, in create_connection
sock.connect(sa)
ConnectionRefusedError: [Errno 61] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connectionpool.py", line 601, in urlopen
chunked=chunked)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connectionpool.py", line 357, in _make_request
conn.request(method, url, **httplib_request_kw)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/http/client.py", line 1239, in request
self._send_request(method, url, body, headers, encode_chunked)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/http/client.py", line 1285, in _send_request
self.endheaders(body, encode_chunked=encode_chunked)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/http/client.py", line 1234, in endheaders
self._send_output(message_body, encode_chunked=encode_chunked)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/http/client.py", line 1026, in _send_output
self.send(msg)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/http/client.py", line 964, in send
self.connect()
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connection.py", line 166, in connect
conn = self._new_conn()
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connection.py", line 150, in _new_conn
self, "Failed to establish a new connection: %s" % e)
urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x109c94fd0>: Failed to establish a new connection: [Errno 61] Connection refused
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/adapters.py", line 440, in send
timeout=timeout
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/connectionpool.py", line 639, in urlopen
_stacktrace=sys.exc_info()[2])
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/urllib3/util/retry.py", line 388, in increment
raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=9090): Max retries exceeded with url: /-/reload (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x109c94fd0>: Failed to establish a new connection: [Errno 61] Connection refused',))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "working.py", line 18, in <module>
python_deployer.deploy_python_closure(clipper_conn, name="udaynaik-model", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas"])
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/deployers/python.py", line 222, in deploy_python_closure
registry, num_replicas, batch_size, pkgs_to_install)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/clipper_admin.py", line 338, in build_and_deploy_model
num_replicas, batch_size)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/clipper_admin.py", line 544, in deploy_model
num_replicas=num_replicas)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/docker/docker_container_manager.py", line 192, in deploy_model
self.set_num_replicas(name, version, input_type, image, num_replicas)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/docker/docker_container_manager.py", line 262, in set_num_replicas
image)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/docker/docker_container_manager.py", line 242, in _add_replica
CLIPPER_INTERNAL_METRIC_PORT)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/clipper_admin/docker/docker_metric_utils.py", line 156, in add_to_metric_config
requests.post('http://localhost:9090/-/reload')
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/api.py", line 112, in post
return request('post', url, data=data, json=json, **kwargs)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/api.py", line 58, in request
return session.request(method=method, url=url, **kwargs)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/sessions.py", line 508, in request
resp = self.send(prep, **send_kwargs)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/sessions.py", line 618, in send
r = adapter.send(request, **kwargs)
File "/Users/e078311/anaconda3/envs/dc/lib/python3.6/site-packages/requests/adapters.py", line 508, in send
raise ConnectionError(e, request=request)
requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=9090): Max retries exceeded with url: /-/reload (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x109c94fd0>: Failed to establish a new connection: [Errno 61] Connection refused',))
@udaynaik :
Port 9090
is for Promethus. I think that you need to cleanup your environment.
Please retry it after removing all the containers by $ docker rm -f $(docker ps -a -q)
.
@withsmilo thanks! after docker restart/cleanup this worked!! But when I add "preds = lr_model.predict(df)" in the function returning prediction for each row of data coming in, it does not work (gets stuck at 18-09-20:01:02:01 INFO [clipper_admin.py:458] Pushing model Docker image to loan:1 18-09-20:01:02:03 INFO [docker_container_manager.py:257] Found 0 replicas for loan:1. Adding 1 ) My lr_model is: lr_model = linear_model.LogisticRegression()
also, since input is list of json objects (batch of 2 in our case), i should be able to construct 'df' and call predict without having an inner function..?
Here is full code: data: credit-default.csv.zip
from clipper_admin import ClipperConnection, DockerContainerManager
from clipper_admin.deployers import python as python_deployer
from sklearn.cross_validation import train_test_split
from sklearn import linear_model
from sklearn.cross_validation import train_test_split
from sklearn import linear_model
import pandas as pd
clipper_conn = ClipperConnection(DockerContainerManager())
clipper_conn.stop_all()
clipper_conn.start_clipper()
df = pd.read_csv('credit-default.csv', skiprows=[0])
target = df['default payment next month']
df = df[["LIMIT_BAL", "SEX", "EDUCATION", "MARRIAGE", "AGE"]]
x_train, x_test, y_train, y_test = train_test_split(df, target, test_size=5)
lr_model = linear_model.LogisticRegression()
lr_model.fit(x_train, y_train)
def test_func(inp):
# inp is a list of string
def pred(i):
df1 = pd.read_json(i, orient='columns')
# return simple value
s = lr_model.predict(df1)
return s
return [str(pred(i)) for i in inp]
clipper_conn.register_application(name="udaynaik-test", input_type="strings", default_output="default", slo_micros=100000)
python_deployer.deploy_python_closure(clipper_conn, name="udaynaik-model", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas","sklearn"])
clipper_conn.link_model_to_app(app_name="udaynaik-test", model_name="udaynaik-model")
Hi @udaynaik ,
It may happen because of, required modules not installed and container failed to start. You can see the failed container by , docker ps -a & get the logs of the container like following,
$ docker logs <container_id>
Starting Python Closure container
Connecting to Clipper with default port: 7000
Encountered an ImportError when running container. You can use the pkgs_to_install argument when calling clipper_admin.build_model() to supply any needed Python packages.
As here, you are using sklearn
, you need to install scipy
module.
just update your python deployer line by,
python_deployer.deploy_python_closure(clipper_conn, name="udaynaik-model", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas","sklearn","scipy"])
And regading 2 input to the API call, you can use input_batch
instade of input
Hope this will solve your issue.
@udaynaik : This sample code is working for me. :)
from clipper_admin import ClipperConnection, DockerContainerManager from clipper_admin.deployers import python as python_deployer clipper_conn = ClipperConnection(DockerContainerManager()) clipper_conn.start_clipper() import pandas as pd def test_func(inp): # inp is a list of string def pred(i): df = pd.read_json(i, orient='columns') # return simple value return df['LIMIT_BAL'].tolist()[0] return [str(pred(i)) for i in inp] clipper_conn.register_application(name="udaynaik-test", input_type="strings", default_output="default", slo_micros=100000) python_deployer.deploy_python_closure(clipper_conn, name="udaynaik-model", version=1, input_type="strings", func=test_func, pkgs_to_install=["pandas"]) clipper_conn.link_model_to_app(app_name="udaynaik-test", model_name="udaynaik-model") import requests, json headers = {"Content-type": "application/json"} input_data = "[{\"LIMIT_BAL\":200000,\"SEX\":2,\"EDUCATION\":1,\"MARRIAGE\":2,\"AGE\":30},{\"LIMIT_BAL\":150000,\"SEX\":2,\"EDUCATION\":3,\"MARRIAGE\":1,\"AGE\":53}]" requests.post("http://localhost:1337/udaynaik-test/predict", headers=headers, data=json.dumps({"input": input_data})).json()
@withsmilo Hi i run your example, and it works . but i was confused why the anwers is rather than {'query_id': 75, 'output': [2000,150000], 'default': False}
@zoux86 :
I sent just one prediction request to the Clipper, and then Clipper returned first 'LIMIT_BAL' value by return df['LIMIT_BAL'].tolist()[0]
. So your result is right.
@zoux86 : How about this?
def test_func(inp):
def pre(i):
d = eval(i) # d's type is list[dict].
for z in d:
for k, v in z.items():
z[k] = z[k] + 1
return d
return [str(pre(i)) for i in inp]
@withsmilo it works, thanks!!!
Hi, I am trying to understand or looking for code snippets to understand how I can handle multi-column input data with different data types in my predict function that is deployed using:
python_deployer.deploy_python_closure(self.cl, name=modelName, version=version, input_type=inputType, func=func)
where func is either the following or model.predict.
def predict_func(inp): preds = model.predict(inp) return [str(p) for p in preds]
My model in the same py file is: model = linear_model.LogisticRegression()
Example of Dataframe I would like to submit for prediction is: LIMIT_BAL SEX EDUCATION MARRIAGE AGE 50000 2 1 2 24 220000 1 1 2 34
Should I pass input_type as "bytes" and decode in the predict function before passing on to actual model predict function?
When I tried passing "model.predict", I get the following error: TypeError: Object of type 'method' is not JSON serializable
I am using sklearn linear_model.
Thank you!