Closed drapado closed 5 years ago
I have no idea what you are referring to. Can you at least add some references or details?
These are versions of yolov3 and yolov3-tiny with 5 and 3 yolo output layers respectively, instead of 3 in normal yolov3 and 2 in normal tiny-yolo. They are used for dataset with normal-size and small objects (smaller than 16x16 when resizing)
Oh I see. So what's the problem? Just train the damn thing:
python3 train.py --cfg cfg/yolov3-tiny-3l.cfg
Namespace(accumulate=1, backend='nccl', batch_size=16, cfg='cfg/yolov3-tiny-3l.cfg', data_cfg='data/coco.data', dist_url='tcp://127.0.0.1:9999', epochs=273, img_size=416, multi_scale=False, nosave=False, num_workers=4, rank=0, resume=False, transfer=False, var=[8.0, 4.0, 1.0, 64.0, 0.1], world_size=1)
Using cpu
layer name gradient parameters shape mu sigma
0 0.conv_0.weight True 432 [16, 3, 3, 3] -0.00543 0.076
1 0.batch_norm_0.weight True 16 [16] -0.751 2.03
2 0.batch_norm_0.bias True 16 [16] -0.644 2.18
3 2.conv_2.weight True 4608 [32, 16, 3, 3] 0.00919 0.203
4 2.batch_norm_2.weight True 32 [32] -0.00182 0.0259
5 2.batch_norm_2.bias True 32 [32] 0.00448 0.0439
6 4.conv_4.weight True 18432 [64, 32, 3, 3] 0.00202 0.104
7 4.batch_norm_4.weight True 64 [64] 0.0109 0.0211
8 4.batch_norm_4.bias True 64 [64] -0.00192 0.0267
9 6.conv_6.weight True 73728 [128, 64, 3, 3] 0.00167 0.0724
10 6.batch_norm_6.weight True 128 [128] -0.00239 0.0245
11 6.batch_norm_6.bias True 128 [128] -0.00153 0.0309
12 8.conv_8.weight True 294912 [256, 128, 3, 3] 0.000854 0.0633
13 8.batch_norm_8.weight True 256 [256] -0.00169 0.0144
14 8.batch_norm_8.bias True 256 [256] 0.000751 0.0138
15 10.conv_10.weight True 1.17965e+06 [512, 256, 3, 3] -8.54e-05 0.0302
16 10.batch_norm_10.weight True 512 [512] -0.000812 0.00809
17 10.batch_norm_10.bias True 512 [512] -0.000975 0.00859
18 12.conv_12.weight True 4.71859e+06 [1024, 512, 3, 3] -3.89e-05 0.0329
19 12.batch_norm_12.weight True 1024 [1024] -0.00114 0.0114
20 12.batch_norm_12.bias True 1024 [1024] -0.000245 0.0109
21 13.conv_13.weight True 262144 [256, 1024, 1, 1] -5.93e-05 0.00306
22 13.batch_norm_13.weight True 256 [256] -0.000572 0.000621
23 13.batch_norm_13.bias True 256 [256] 9.75e-06 0.000686
24 14.conv_14.weight True 1.17965e+06 [512, 256, 3, 3] -0.000202 0.0245
25 14.batch_norm_14.weight True 512 [512] -2.77e-05 0.000506
26 14.batch_norm_14.bias True 512 [512] 0.000142 0.000404
27 15.conv_15.weight True 130560 [255, 512, 1, 1] -0.000198 0.00432
28 15.conv_15.bias True 255 [255] -0.000213 0.00228
29 18.conv_18.weight True 32768 [128, 256, 1, 1] -0.000302 0.00395
30 18.batch_norm_18.weight True 128 [128] -0.000537 0.00363
31 18.batch_norm_18.bias True 128 [128] -4.05e-05 0.00424
32 21.conv_21.weight True 884736 [256, 384, 3, 3] -0.000279 0.0298
33 21.batch_norm_21.weight True 256 [256] -0.000149 0.000705
34 21.batch_norm_21.bias True 256 [256] -0.000235 0.000646
35 22.conv_22.weight True 65280 [255, 256, 1, 1] -0.000134 0.00421
36 22.conv_22.bias True 255 [255] -0.000665 0.00557
Model Summary: 37 layers, 8.85237e+06 parameters, 8.85237e+06 gradients
Epoch Batch xy wh conf cls total nTargets time
0/272 0/7328 1.45 0.148 88.7 8.76 99 72 8.03
0/272 1/7328 1.38 0.151 88.7 8.77 99 134 6.82
0/272 2/7328 1.36 0.149 88.7 8.77 98.9 131 6.63
0/272 3/7328 1.34 0.149 88.7 8.76 98.9 84 7.2
0/272 4/7328 1.35 0.151 88.7 8.76 98.9 100 6.62
...
@drapado
have you successful trained yolov3_5l.cfg
in this repo?
@glenn-jocher
yolov3.cfg
and yolov3-spp.cfg
output 3 different scales for prediction, could you please add the code for yolov3_5l.cfg
, that means outputs 5 different scales for prediction?
@H-YunHui @glenn-jocher Yes, I have successfully trained yolov3-5L and yolov3-tiny-3L without any problem. Everything working straightaway
@drapado use this repo? if not ,could you share your repo?
@H-YunHui Yes I used this repo out of the way. Just change the --cfg option to the yolov3-5L cfg
@drapado
have you used the yolov3-5L cfg
to train on COCO datasets? what is the map?
@H-YunHui I don't think 5l will help on COCO, as all of the extra anchors are tiny, from 4,4 to 9,9, so it may be more apt to custom dataset with lots of tiny objects.
I could be wrong of course. If you do train on COCO let us know your results!
Hi, I'm trying to train yolov3-tiny-3l and it seems it's not possible because of the output size differences between normal tiny-yolo and tiny-3l