ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.55k stars 16.3k forks source link

How I can use cutout data augmentation in a different way? #10010

Closed ampelmannn closed 1 year ago

ampelmannn commented 1 year ago

Search before asking

Question

Thanks to your github as you commented, i used YOLOv5s with cutout data augmentation. but i would like to put 'cutout box' in the ground truth bounding box. How can I do?

Additional

No response

github-actions[bot] commented 1 year ago

👋 Hello @ampelmannn, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

YOLOv5 CI

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training, validation, inference, export and benchmarks on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

github-actions[bot] commented 1 year ago

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

glenn-jocher commented 11 months ago

@ampelmannn hey there! Thanks for reaching out. To apply the "cutout box" directly within the ground truth bounding box for your data augmentation, you can modify the mosaic.py augmentor to suit your specific requirements. This file is located in the yolov5/data directory of the YOLOv5 repository. You can customize the logic within this file to implement the desired behavior for your cutout data augmentation.

Let me know if you need further assistance!