ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.56k stars 16.31k forks source link

Multiclass trained model only predicts one class in inference #3641

Closed ChristofJugel closed 3 years ago

ChristofJugel commented 3 years ago

Hello. I trained a model on a 10 class dataset and the training outputs hint, that it worked properly. However, using the best.pt weights to do the inference, prediction only work for class 0. If I explicitely define another class, no labels are printed.

Is there any guidance on this?

github-actions[bot] commented 3 years ago

👋 Hello @ChristofJugel, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), testing (test.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 3 years ago

@ChristofJugel 👋 Hello! Thanks for asking about improving training results. Most of the time good results can be obtained with no changes to the models or training settings, provided your dataset is sufficiently large and well labelled. If at first you don't get good results, there are steps you might be able to take to improve, but we always recommend users first train with all default settings before considering any changes. This helps establish a performance baseline and spot areas for improvement.

If you have questions about your training results we recommend you provide the maximum amount of information possible if you expect a helpful response, including results plots (train losses, val losses, P, R, mAP), PR curve, confusion matrix, training mosaics, test results and dataset statistics images such as labels.png. All of these are located in your project/name directory, typically yolov5/runs/train/exp.

We've put together a full guide for users looking to get the best results on their YOLOv5 trainings below.

Dataset

COCO Analysis

Model Selection

Larger models like YOLOv5x and YOLOv5x6 will produce better results in nearly all cases, but have more parameters, require more CUDA memory to train, and are slower to run. For mobile deployments we recommend YOLOv5s/m, for cloud deployments we recommend YOLOv5l/x. See our README table for a full comparison of all models.

YOLOv5 Models

Training Settings

Before modifying anything, first train with default settings to establish a performance baseline. A full list of train.py settings can be found in the train.py argparser.

Further Reading

If you'd like to know more a good place to start is Karpathy's 'Recipe for Training Neural Networks', which has great ideas for training that apply broadly across all ML domains: http://karpathy.github.io/2019/04/25/recipe/

Evm7 commented 3 years ago

Hi ChristofJugel, maybe you have use the "--single-class" argument when training, in a way that it only takes into account one class even thoug several labels have been introduced.

github-actions[bot] commented 3 years ago

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

mobassir94 commented 2 years ago

i am facing exactly same issue,,check the last visualized image : https://colab.research.google.com/drive/1Pyz5hCi0fpmQ4lFV9rvAcdMp2yg9KN1P

it detects class 0,1,2 as 0 always

glenn-jocher commented 2 years ago

@mobassir94 👋 hi, thanks for letting us know about this possible problem with YOLOv5 🚀. We've created a few short guidelines below to help users provide what we need in order to get started investigating a possible problem.

How to create a Minimal, Reproducible Example

When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to reproduce the problem. This is referred to by community members as creating a minimum reproducible example. Your code that reproduces the problem should be:

For Ultralytics to provide assistance your code should also be:

If you believe your problem meets all the above criteria, please close this issue and raise a new one using the 🐛 Bug Report template with a minimum reproducible example to help us better understand and diagnose your problem.

Thank you! 😃