ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.93k stars 16.4k forks source link

Can we get object detection on lidar 2d stream with yolov5? #6293

Closed Shibaditya99 closed 2 years ago

Shibaditya99 commented 2 years ago

Search before asking

Question

I have an ouster lidar, where I can generate 2D field streams. so is it possible to detect objects on that stream using yolov5?

Additional

If I also want to detect objects with thermal cam data using yolov5, is it possible?

github-actions[bot] commented 2 years ago

👋 Hello @Shibaditya99, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.

Requirements

Python>=3.6.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 2 years ago

@Shibaditya99 any 2d 3-channel labelled data is trainable off the shelf. n-channel with a few tweaks.