ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.91k stars 16.39k forks source link

Low confidence for bounding boxes with high aspect ratios #6376

Closed hgtttttt closed 2 years ago

hgtttttt commented 2 years ago

Search before asking

Question

Thanks for your yolov5, the most powerful and practical object detection model I have ever seen. In my own dataset, many bounding boxes have a high aspect ratio, which of more than 10:1, so that the result of COCO is inapplicable. I try regenerating anchor size using your algorithm, but the result was no promotion. So could you please tell me that which hyperparameters I can try changing to get a better result?

For example, the image below is labeled. With the default hyperparameters, these bounding boxes with high aspect ratios are always undetectable or with low confidence.

image

I appreciate your help.

Additional

No response

github-actions[bot] commented 2 years ago

👋 Hello @hgtttttt, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.

Requirements

Python>=3.6.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 2 years ago

@hgtttttt low confidence predictions indicate a lack of sufficient training, i.e. your validation losses should be overfitting and your confidences should be >0.90. Default AR thresholds for candidate labels were increased from 20 to 100 in https://github.com/ultralytics/yolov5/pull/5556, so labels with aspect ratios up to 100 will be included in training.

Extreme aspect ratio labels may always be a challenge for the default models however given that they have square convolution kernels, i.e. (3,3) and (1,1). Before modifying any architecture though I would ensure you are following the guide below.

👋 Hello! Thanks for asking about improving YOLOv5 🚀 training results.

Most of the time good results can be obtained with no changes to the models or training settings, provided your dataset is sufficiently large and well labelled. If at first you don't get good results, there are steps you might be able to take to improve, but we always recommend users first train with all default settings before considering any changes. This helps establish a performance baseline and spot areas for improvement.

If you have questions about your training results we recommend you provide the maximum amount of information possible if you expect a helpful response, including results plots (train losses, val losses, P, R, mAP), PR curve, confusion matrix, training mosaics, test results and dataset statistics images such as labels.png. All of these are located in your project/name directory, typically yolov5/runs/train/exp.

We've put together a full guide for users looking to get the best results on their YOLOv5 trainings below.

Dataset

COCO Analysis

Model Selection

Larger models like YOLOv5x and YOLOv5x6 will produce better results in nearly all cases, but have more parameters, require more CUDA memory to train, and are slower to run. For mobile deployments we recommend YOLOv5s/m, for cloud deployments we recommend YOLOv5l/x. See our README table for a full comparison of all models.

YOLOv5 Models

Training Settings

Before modifying anything, first train with default settings to establish a performance baseline. A full list of train.py settings can be found in the train.py argparser.

Further Reading

If you'd like to know more a good place to start is Karpathy's 'Recipe for Training Neural Networks', which has great ideas for training that apply broadly across all ML domains: http://karpathy.github.io/2019/04/25/recipe/

Good luck 🍀 and let us know if you have any other questions!

github-actions[bot] commented 2 years ago

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!