ultralytics / yolov5

YOLOv5 πŸš€ in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.91k stars 16.39k forks source link

The resulting image with this code β€œpython detect.py ” has no identified object labeled #6810

Closed aifeixingdelv closed 2 years ago

aifeixingdelv commented 2 years ago

Search before asking

YOLOv5 Component

Detection

Bug

I use the code β€œpython detect.py --source /hy-tmp/yolov5-master/data/NEU-DET/train/images/crazing_111.jpg --weights /hy-tmp/yolov5-master/runs/train/exp2/weights/best.pt”. But in the result folder, the resulting detected image have no identified object labeled

Environment

yolov5-6.1 Python 3.8.10 pytorch1.7.1+cu110

Minimal Reproducible Example

No response

Additional

No response

Are you willing to submit a PR?

github-actions[bot] commented 2 years ago

πŸ‘‹ Hello @aifeixingdelv, thank you for your interest in YOLOv5 πŸš€! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a πŸ› Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 2 years ago

@aifeixingdelv πŸ‘‹ Hello! Thanks for asking about improving YOLOv5 πŸš€ training results.

Most of the time good results can be obtained with no changes to the models or training settings, provided your dataset is sufficiently large and well labelled. If at first you don't get good results, there are steps you might be able to take to improve, but we always recommend users first train with all default settings before considering any changes. This helps establish a performance baseline and spot areas for improvement.

If you have questions about your training results we recommend you provide the maximum amount of information possible if you expect a helpful response, including results plots (train losses, val losses, P, R, mAP), PR curve, confusion matrix, training mosaics, test results and dataset statistics images such as labels.png. All of these are located in your project/name directory, typically yolov5/runs/train/exp.

We've put together a full guide for users looking to get the best results on their YOLOv5 trainings below.

Dataset

COCO Analysis

Model Selection

Larger models like YOLOv5x and YOLOv5x6 will produce better results in nearly all cases, but have more parameters, require more CUDA memory to train, and are slower to run. For mobile deployments we recommend YOLOv5s/m, for cloud deployments we recommend YOLOv5l/x. See our README table for a full comparison of all models.

YOLOv5 Models

Training Settings

Before modifying anything, first train with default settings to establish a performance baseline. A full list of train.py settings can be found in the train.py argparser.

Further Reading

If you'd like to know more a good place to start is Karpathy's 'Recipe for Training Neural Networks', which has great ideas for training that apply broadly across all ML domains: http://karpathy.github.io/2019/04/25/recipe/

Good luck πŸ€ and let us know if you have any other questions!

aifeixingdelv commented 2 years ago

Thank you for your comment. But maybe you don't full understand my meaning. I use the code "python detect.py" to detect my weights, however, in the yolov5/runs/detect/exp, I get a picture without box and conf. If I detect a video, I can get the box and conf.

glenn-jocher commented 2 years ago

@aifeixingdelv got it. If you can help us reproduce this issue, i.e. with official weights on a publically available image/video we can get started debugging.

github-actions[bot] commented 2 years ago

πŸ‘‹ Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 πŸš€ resources:

Access additional Ultralytics ⚑ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 πŸš€ and Vision AI ⭐!