ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.83k stars 16.37k forks source link

YOLOv5n6 when exported to ONNX from PyTorch increases model size #6890

Closed ShubhamNagarkar closed 2 years ago

ShubhamNagarkar commented 2 years ago

Search before asking

Question

A custom trained pytorch YOLOv5n6 model has a size of 6.3MB. But when I used the python export.py using the best.pt, the exported onnx model's size is 13.1MB. Is there specific reason for it? Also, if --dynamic flag is not used, the inference speed goes to 224ms as against pytorch model's inference speed which is 28ms. I appreciate any help or suggestion to tackle this issue. Thank you.

Additional

No response

github-actions[bot] commented 2 years ago

👋 Hello @ShubhamNagarkar, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 2 years ago

@ShubhamNagarkar PyTorch models are saved in FP16, ONNX exports by default are FP32. See export.py argparser for export options.

github-actions[bot] commented 2 years ago

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!