ultralytics / yolov5

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
50.55k stars 16.3k forks source link

Mosaic augmentation influence on custom dataset #9334

Closed kbegiedza closed 2 years ago

kbegiedza commented 2 years ago

Search before asking

Question

I'm trying to train yolov5 on custom dataset with very similar classes: person in jacket / person in shirt. Due to nature of mosaic, sometimes only person's legs are visible on image - therefore we're unable to categorize person correctly (jacket / shirt).

Can I tweak it with some hyper params to achieve best results for my case?

Additional

No response

github-actions[bot] commented 2 years ago

👋 Hello @kbegiedza, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.

glenn-jocher commented 2 years ago

@kbegiedza yes of course, you can modify all hyperparameters including mosaic probability in your hyp file: https://github.com/ultralytics/yolov5/blob/8aa196ce08007aa1033b0e42931c247e1e491321/data/hyps/hyp.scratch-low.yaml#L1-L34

github-actions[bot] commented 2 years ago

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!