Closed colin99d closed 2 years ago
Some print out can be removed by disabling the enable_progress_bar
in the pl_trainer_kwargs
. I'm not sure which parts you are trying to remove but most of the printouts you see there come from PyTorch Lightning.
model(
pl_trainer_kwargs={
"accelerator": "gpu",
"enable_progress_bar": False,
},
Other print outs can be limited as described in issue #927
Some print out can be removed by disabling the
enable_progress_bar
in thepl_trainer_kwargs
. I'm not sure which parts you are trying to remove but most of the printouts you see there come from PyTorch Lightning.model( pl_trainer_kwargs={ "accelerator": "gpu", "enable_progress_bar": False, },
Other print outs can be limited as described in issue #927
@colin99d could you give a try to these solutions and let us know if that works for you?
That does help, is there any way to block this stuff as well?
@colin99d try
pl_trainer_kwargs={
"enable_model_summary": False,
},
I should have follow up. I currently have this: "logger": False,
"enable_model_summary": False,
And im still getting a lot of output. However, this looks like its more of a pytorch-lightning issue. Should I go ahead and close this issue?
@colin99d I'm currently using this:
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.CRITICAL)
logging.getLogger("darts.models").setLevel(logging.CRITICAL)
logging.getLogger("pytorch_lightning").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.pl_forecasting_module").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.tcn_model").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.nbeats").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.NHiTSModel").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.nhits").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.torch_forecasting_model").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.forecasting_model").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.baselines").setLevel(logging.CRITICAL)
logging.getLogger("pytorch_lightning.accelerators.gpu").setLevel(logging.CRITICAL)
logging.getLogger("darts.timeseries").setLevel(logging.CRITICAL)
logging.getLogger("darts.utils.utils").setLevel(logging.CRITICAL)
logging.getLogger("darts.utils.torch").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.tft_model").setLevel(logging.CRITICAL)
logging.getLogger("darts.models.forecasting.tft_submodels").setLevel(logging.CRITICAL)
logging.getLogger("darts.utils.data.training_dataset").setLevel(logging.CRITICAL)
logging.getLogger("darts.utils.data.horizon_based_dataset").setLevel(logging.CRITICAL)
logging.getLogger("darts.utils.statistics").setLevel(logging.CRITICAL)
logging.getLogger("darts.dataprocessing.transformers.scaler").setLevel(logging.CRITICAL)
logging.getLogger("darts.dataprocessing.transformers.fittable_data_transformer").setLevel(logging.CRITICAL)
alongside that:
pl_trainer_kwargs={
"enable_model_summary": False,
"enable_progress_bar": False,
},
If you use various models, try add all of them in
logging.getLogger("darts.models.forecasting.XXXXXXXX").setLevel(logging.CRITICAL)
another trick is to use:
import IPython
import IPython.display
......
Model.historical_forecasts()
IPython.display.clear_output()
Hope this helps.
Thank you for all of this!!
Is your feature request related to a current problem? Please describe. When running models in Jupyterlab there is a lot of output. This limits our ability to make clean dashboards.
Describe proposed solution Add a
verbosity
argument so that messages can be hidden.Additional context Below is an example of a dashboard being crowded out by information