urbangrammarai / signature_ai_paper

Paper presenting experiments to learn spatial signatures from satellite imagery with AI
0 stars 0 forks source link

Literature review on neural net architectures #5

Open martinfleis opened 2 years ago

martinfleis commented 2 years ago

Local climate zones

Re-ResNet From scratch Taubenböck et al 2020 https://www.sciencedirect.com/science/article/pii/S0264275120301347#s0015
LCZNet From scratch Liu and Shi 2020 https://www.sciencedirect.com/science/article/pii/S0924271620301052?casa_token=vQctJ83w0A4AAAAA:OL4RVN1D6u1u7tGWr9XHfqnFje487zJ-go5N7P41fEwKrjUDrLvfiXowLPuC6_zGFm8h9QQ
ResNet From scratch Qui et al 2020 https://ieeexplore.ieee.org/abstract/document/8951229
Re-ResnNet; st-ResNet From scratch Qiu et al 2019 https://ieeexplore.ieee.org/abstract/document/8898223?casa_token=TAVPq_AhFeIAAAAA:1qG8wbuhM21jvECJJCjk3ERMgGPj039X8NegWIFvtuBYsxCTCwMXVvkOA1gDvprPxerZXhg
modified ResNet From scratch Zhu et al 2022 https://www.sciencedirect.com/science/article/pii/S0034425721005149

Land use/ land cover

VGG, ResNet, GoogLeNet Imagenet Alhassan et al 2020 https://link.springer.com/article/10.1007/s00521-019-04349-9#Sec5
UNet from scratch Karra et al 2021 https://ieeexplore.ieee.org/abstract/document/9553499?casa_token=eR90aq57UioAAAAA:dt2JW4sMT9WaYgI9Rjw2FDUyFtFTsNuU4vPXt9KxXo-Jt7_1tAOFlT9BFHUbAQBAWMrZ-Ro
VGG16 Imagenet Srivastava et al 2019 https://www.sciencedirect.com/science/article/pii/S0034425719301579?via%3Dihub#bb0205
custom from scratch Sharma et al 2017 https://www.sciencedirect.com/science/article/pii/S0893608017301806#sec4
custom from scratch Wang et al 2018 https://www.mdpi.com/1424-8220/18/3/769/htm#overview
AlexNet, GoogleNet, VGG imagenet Xie et al 2019 https://ieeexplore.ieee.org/abstract/document/8699111?casa_token=xb-UTbyfvP0AAAAA:HUGwJCG1_cTkNPXxbVKQsv70NZeZd12mXBDKpDKwk3E1z36-BiIji5uL1jlc4JG1h1TULQ3o4ck
custom Imagenet Othman et al 2017 https://ieeexplore.ieee.org/abstract/document/7917346?casa_token=Ced5jTmzjfEAAAAA:wte-jF3L3UeaEqS_wNzZ1t_je_Hs1FDY7FvZtaZVKZBrF_NvHxk2oYuxuZ8rgAumTSNhwa4iEdI
AlexNet, VGG16 Imagenet He et al 2018 https://ieeexplore.ieee.org/document/8408558
AlexNet, GoogLeNet, VGG16 Imagenet Cheng 2018 https://ieeexplore.ieee.org/document/8252784
Overfeat (AlexNet) Imagenet Marmanis 2015 https://ieeexplore.ieee.org/abstract/document/7342907?casa_token=TvFRCV4x-eIAAAAA:q6PkZNXBoOwfpai7KROMel8kvl8uNOluY11J0Rt7WrZ-gB1X-jXUwvTLONvBnJqKi38gw7hKFiw
OverFeat, AlexNet, CaffeNet, GoogLeNet, Vgg16, PatreoNet Imagenet Nogueira et al 2017 https://www.sciencedirect.com/science/article/pii/S0031320316301509#s0055
custom from scratch He et al 2018 https://ieeexplore.ieee.org/abstract/document/8439081?casa_token=gOzusHT4BmkAAAAA:8_OrTxx3QSod5UUTi_jBw4bKXm_y6OWrrNL9wi0oGcYaDv_cPVL2BoH0RZXaf06Ay6XMXv0JYGY
custom from scratch Zhu et al 2018 https://ieeexplore.ieee.org/document/8361481
AlexNet, CaffeNet, VGG-M, VGG-S, VGG-F, VGG-VD16, and VGG-VD19 Imagenet Li et al 2017 https://ieeexplore.ieee.org/abstract/document/7959553?casa_token=fLbu2LgibVkAAAAA:JtCdCoYgYmldl5PFrl75p7IZJxiKlNwJnH1P-vbOS9O_1JC5O9pqX1wFhs223w0NtPDZebHf7gE

Other

VGG16 feature extraction Imagenet ŠĆEPANOVIĆ, Law… https://arxiv.org/pdf/2102.00848.pdf
Inception V3; VGG16 Imagenet Chew et al 2018 https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-018-0132-1#Sec5
darribas commented 1 year ago

Adding this to remember to include it if possible:

https://doi.org/10.1016/j.isprsjprs.2019.04.015

Deep learning in remote sensing applications: A meta-analysis and review

Deep learning (DL) algorithms have seen a massive rise in popularity for remote-sensing image analysis over the past few years. In this study, the major DL concepts pertinent to remote-sensing are introduced, and more than 200 publications in this field, most of which were published during the last two years, are reviewed and analyzed. Initially, a meta-analysis was conducted to analyze the status of remote sensing DL studies in terms of the study targets, DL model(s) used, image spatial resolution(s), type of study area, and level of classification accuracy achieved. Subsequently, a detailed review is conducted to describe/discuss how DL has been applied for remote sensing image analysis tasks including image fusion, image registration, scene classification, object detection, land use and land cover (LULC) classification, segmentation, and object-based image analysis (OBIA). This review covers nearly every application and technology in the field of remote sensing, ranging from preprocessing to mapping. Finally, a conclusion regarding the current state-of-the art methods, a critical conclusion on open challenges, and directions for future research are presented.