Hello, detect.py with multiple input images not working. Runing in windows11, python3.8, tensorflow 2.10.1, cuda 11.2, cuDNN 8.1
In this example I have 2 input images: --images ./data/images/car.jpg,./data/images/car1.jpg and only the first get's predicted.
(ALPR_VT-LPR-yolov4) D:\Documents\alpr_ocr\docr03\VT-LPR-main\tensorflow_yolov4_tflite>python detect.py --weights ./checkpoints/custom-416 --size 416 --model yolov4 --images ./data/images/car.jpg,./data/images/car1.jpg
2023-03-24 11:55:07.429861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-24 11:55:07.766596: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5490 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3070 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
2023-03-24 11:55:07.783455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5490 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3070 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
['./data/images/car.jpg', './data/images/car1.jpg']
./data/images/car.jpg
2023-03-24 11:55:18.834372: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8100
2023-03-24 11:55:20.592446: I tensorflow/stream_executor/cuda/cuda_blas.cc:1614] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
tf.Tensor([0.79416025 0.35244757 0.8548766 0.43816927], shape=(4,), dtype=float32)
tf.Tensor(0.9769959, shape=(), dtype=float32)
./data/images/car1.jpg
tf.Tensor([0. 0. 0. 0.], shape=(4,), dtype=float32)
tf.Tensor(0.0, shape=(), dtype=float32)
If I load the model inside the image loop it will work, but that is not time eficient.
for count, image_path in enumerate(images, 1):
...
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
I'm printing the boxes and scores to see the bbox of the LP and the score.
Here is the result when I load the model inside the image loop.
(ALPR_VT-LPR-yolov4) D:\Documents\alpr_ocr\docr03\VT-LPR-main\tensorflow_yolov4_tflite>python detect.py --weights ./checkpoints/custom-416 --size 416 --model yolov4 --images ./data/images/car.jpg,./data/images/car1.jpg
2023-03-24 12:05:24.396268: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-24 12:05:24.740876: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5490 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3070 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
2023-03-24 12:05:24.757496: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1616] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5490 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3070 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.6
['./data/images/car.jpg', './data/images/car1.jpg']
./data/images/car.jpg
2023-03-24 12:05:35.841978: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8100
2023-03-24 12:05:37.604676: I tensorflow/stream_executor/cuda/cuda_blas.cc:1614] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
tf.Tensor([0.79416025 0.35244757 0.8548766 0.43816927], shape=(4,), dtype=float32)
tf.Tensor(0.9769959, shape=(), dtype=float32)
./data/images/car1.jpg
tf.Tensor([0.5381658 0.28271842 0.6058951 0.37036377], shape=(4,), dtype=float32)
tf.Tensor(0.9372273, shape=(), dtype=float32)
Hello, detect.py with multiple input images not working. Runing in windows11, python3.8, tensorflow 2.10.1, cuda 11.2, cuDNN 8.1
In this example I have 2 input images: --images ./data/images/car.jpg,./data/images/car1.jpg and only the first get's predicted.
If I load the model inside the image loop it will work, but that is not time eficient.
I'm printing the boxes and scores to see the bbox of the LP and the score.
Here is the result when I load the model inside the image loop.
@usama-x930
did you test several images in detect.py?