vacancy / PreciseRoIPooling

Precise RoI Pooling with coordinate gradient support, proposed in the paper "Acquisition of Localization Confidence for Accurate Object Detection" (https://arxiv.org/abs/1807.11590).
MIT License
772 stars 152 forks source link

about train #8

Closed fengxiuyaun closed 6 years ago

fengxiuyaun commented 6 years ago

你好,非常感谢您的分享-IOUnet,但是我有几处不了解的地方。

  1. 文章说For a better performance, we use class-aware IoU predictors.这个是什么意思呢? 2.在3.1 Learning to predict IoU节,这部分仅是介绍了怎么训练Standalone IoU-Net吧?就如rcnn一样分两步:第一步先训练前面的FPN。第二步,在您说的augment GT上训练IOU那个分支。再第二步的时候把augment的产生的box和第一步产生的feature输入到PrRoI-Pooling中,预测得到的IOU与IOU标签(取值[-1,1])作loss,进行训练? 3.假如联合训练的话就是再2中第二步添加下边的分类和回归分支?
fengxiuyaun commented 6 years ago

还有就是,我还是不能理解IOU lable怎么会分布到[-1,1]。您说预测得到的iou是预测到的bounding box 与真值框的IOU,怎么会有负数呢?就如完全不匹配顶多是IOU=0呀?

jbr97 commented 6 years ago
  1. class-aware IoU predictors,类别相关(有类别区分的)的IoU检测器
  2. 论文里说到,我们将IoU[0.5, 1]的bbox的IoU值线性变换到[-1,1],线性变换即F(IoU) = 4*IoU-3
fengxiuyaun commented 6 years ago

谢谢回复哈,但我没找到从什么地方体现出有类别相关呢?

jbr97 commented 6 years ago

这应该算是专有名词吧,我翻译的也不准,如果你在搜索引擎里输入class-aware detector or class-agnostic detector,应该能获得非常详尽的解释:)

vacancy commented 6 years ago

On Class-aware IoU predictors.

In short, assuming we have 80 classes in our dataset, the output of the IoU prediction branch is a vector iou of length 80 for each bounding box. After determining its class label c (based on the classification branch), we use iou[c] as the predicted IoU.

BTW, the bounding box regression branch in Faster R-CNN/Mask R-CNN is also "class-aware".

fengxiuyaun commented 6 years ago

oh, thank you very much

vacancy commented 6 years ago

Closing this thread. Feel free to reopen it if you have any further questions.