Open selay01 opened 6 years ago
https://github.com/rasbt/mlxtend A library of extension and helper modules for Python's data analysis and machine learning libraries.
suport stacking for Regression and Classification
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import itertools from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.data import iris_data from mlxtend.plotting import plot_decision_regions # Initializing Classifiers clf1 = LogisticRegression(random_state=0) clf2 = RandomForestClassifier(random_state=0) clf3 = SVC(random_state=0, probability=True) eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft') # Loading some example data X, y = iris_data() X = X[:,[0, 2]] # Plotting Decision Regions gs = gridspec.GridSpec(2, 2) fig = plt.figure(figsize=(10, 8)) for clf, lab, grd in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'], itertools.product([0, 1], repeat=2)): clf.fit(X, y) ax = plt.subplot(gs[grd[0], grd[1]]) fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2) plt.title(lab) plt.show()
https://github.com/rasbt/mlxtend A library of extension and helper modules for Python's data analysis and machine learning libraries.
suport stacking for Regression and Classification