vijaybarve / bdvis

Biodiversity data Visualizations in R
28 stars 12 forks source link

Add visualization images to readme.md #105

Open vijaybarve opened 4 years ago

vijaybarve commented 4 years ago

It will be useful to have some interesting visualizations added to the readme.md file to give some idea to users what to expect from each function.

siddhantdubey commented 4 years ago

Distriplan Plot:

distriplani

DistriPlot Tomato distritomato

India Plot Size: 0.1 indiaplotsize0 1

India Plot Size: 1 indiaplotsize1

khknopp commented 4 years ago

Hello! Here are all pictures for all of the functions: bdcalendarheat: bdcalendarheat bdcomplete: bdcomplete chronohorogram: chronohorogram distrigraph: distrigraph mapgrid: mapgrid taxotree: taxotree tempolar: tempolar

khknopp commented 4 years ago

Distriplan Plot:

distriplani

DistriPlot Tomato distritomato

India Plot Size: 0.1 indiaplotsize0 1

India Plot Size: 1 indiaplotsize1

Hi! I suppose you had a problem with the Collection Date column from rinat. If so, do you need a tip? @siddhantdubey

siddhantdubey commented 4 years ago

@khknopp Yes, the tip would be much appreciated!

khknopp commented 4 years ago

So, as you know, the column Collection Date is not available. However, you can solve this by renaming that column and then plotting all the necessary graphs. To rename the column you can, for example, export the table to csv, change the column name in a code editor and then read and use that imported table from csv. write.csv() and read.csv()

siddhantdubey commented 4 years ago

MapGrid Size 1 in America for Icterus: sizeicterus1

MapGrid Size 0.1 in America for Icterus: icterustiny

Icterus Daily: icterusdaily

Icterus Weekly: icterusweekly

Icterus Monthly: icterusmonthly

Chronohorogram: chronohorogramicterus

Completeness Map: completenesicterus

CalendarHeat Map: heatmapicterus

DistriGraph Tomato: redrecordsicterus

DistriGraph White: icteruswhitespecies

CollectionEfforts: collectioneffortsvstimeicterus


require("bdvis")
require("rgbif")

spiders = occ_search(scientificName="Icterus", limit=10000)
spiders = format_bdvis(spiders$data, "rgbif")
mapgrid(spiders, ptype="species", region=c("America"))
mapgrid(spiders,ptype="records",region=c("America"),gridscale=0.1) 
tempolar(spiders, color="green", title="Daily", plottype="r", timescale="d")
tempolar(spiders, color="blue", title="Weekly", plottype="p", timescale="w") 
tempolar(spiders, color="red", title="Monthly", plottype="r", timescale="m")
chronohorogram(spiders)
comp=bdcomplete(spiders,recs=5)
mapgrid(comp, ptype="complete", region=c("America"))
bdcalendarheat(spiders) 
distrigraph(spiders,ptype="cell",col="tomato") 
distrigraph(spiders,ptype="species",ylab="Species") 
distrigraph(spiders,ptype="efforts",col="red") 
siddhantdubey commented 4 years ago

With Everything Fixed:

Accumulation of Species Data Over Time: accuspeciesovertime

Oriole Distribution in the Americas: americaoriolemap

Calendar Heat Map: calendarheatmap

Chronhorogram: chronogram

Completeness vs Species: completenesvsspecies

Daily Records: dailyrecords

Distribution Records per Species: distriplainrecordsperspec

Distribution Tomato Records per Cell: distritomatorecordspercell

Icterus Complete Map: icteruscompletemap

Monthly Record: monthlyrecord

Weekly Records: weeklyrecords


require("bdvis")
require("rgbif")

orioles = occ_search(scientificName="Icterus", limit=50000)
orioles = format_bdvis(orioles$data, "rgbif")
mapgrid(orioles, ptype="species", title="Distribution of Oriole Sightings in the Americas", region=c("USA", "Mexico", "Argentina", "Chile", "Bolivia", "Venezuela", "Brazil", "Peru", "Colombia", "Ecuador", "Uruguay", "Paraguay", "Guyana", "Suriname", "French Guiana", "Aruba"))
tempolar(orioles, color="green", title="Daily Record Collection", plottype="r", timescale="d")
tempolar(orioles, color="blue", title="Weekly Record Collection", plottype="p", timescale="w") 
tempolar(orioles, color="red", title="Monthly Record Collection", plottype="r", timescale="m")
chronohorogram(orioles, title="Chronohorogram of Oriole Sightings")
comp=bdcomplete(orioles,recs=5)
mapgrid(comp, ptype="complete", title="Complete Map Orioles", region=c("USA", "Mexico", "Argentina", "Chile", "Bolivia", "Venezuela", "Brazil", "Peru", "Colombia", "Ecuador", "Uruguay", "Paraguay", "Guyana", "Suriname", "French Guiana", "Aruba"))
bdcalendarheat(orioles, title="Calendar Heat Map of Oriole Sightings") 
distrigraph(orioles,ptype="cell",col="tomato") 
distrigraph(orioles,ptype="species",ylab="Species") 
distrigraph(orioles,ptype="effortspecies",col="red",cumulative=T,type="l")
ZeroDawn0D commented 4 years ago

CalendarMap CellGraph Chronohorogram DailySymTemporal DistriGraphEfforts DistriGraphEffortSpecies MapSpeciesJ MonthlyLineTemporal SpeciesPlot TaxoTree WeeklyPolyTemporal BioDiversity Data from https://www.inaturalist.org/projects/flora-of-japan

ZeroDawn0D commented 4 years ago

DailyLineTemporal DistriGraphEfforts DistriGraphEffortSpecies Updated Graphs

Rishi0812 commented 4 years ago

Hello Sir @vijaybarve Here are the Plottings on The topic: Spiders Of the World

4 5 6 7 8 9 10 11 14 15 1 3

Program Script: Program Code.txt

Rishi0812 commented 4 years ago

Hello Sir @vijaybarve Here are the Plottings on The topic: Spiders Of Minnesota:

11 12 13 14 15 16 17 18 19 20

Here is the Program Script: SoM Program Code.txt

arthtyagi commented 4 years ago

These are the visualizations I got : MapGrid Rplot Distribution Records Rplot01 Mapgrid with GridScale=0.1 mapgrid_scale01 taxotree(inat) taxotree(inat)

arthtyagi commented 4 years ago

I used this https://www.inaturalist.org/projects/arthropods-on-snow dataset for generating these. Distribution Per Cell : Distripercell Distribution per species : distriperspecies Map Grid for Arthropods on Snow : mapgridarthropods

ghost commented 4 years ago

Chronohogram Distribution Map Complete Completeness Daily Weekly Monthly Taxonomy Calender

Visualisation for bdvis.zip

transparentChange commented 4 years ago

density-map yearly-accumulation comleteness-map completeness-vs-number-of-species density-map species-freq-over-cells species-freq-over-records daily monthly monthlyDetailed weekly yearly-efforts calendar

https://github.com/transparentPresence/bdvis_samples

adtserapio commented 4 years ago

Hello Sir @vijaybarve, could you please advise?

After running

require("bdvis")
require("rgbif")

kangaroos<-occ_search(scientificName="Macropus", limit=1000)
kangaroos<-format_bdvis(kangaroos$data, "rgbif")

kangaroos<-gettaxo(kangaroos)
taxotree(kangaroos) 

such as

Error: duplicate column name: Kingdom

I tried fixing duplicate Genus column errors which I remedied by deleting the duplicate ones with NA values. I get this error instead:

Error in do.call("format", args.legend) : second argument must be a list

calendar-heat-map chronohorogram completeness-vs-number distrigraph-accumulation distrigraph-cell distrigraph-species mapgrid-complete mapgrid tempolar-daily tempolar-monthly tempolar-weekly

hxxr commented 4 years ago
require(bdvis)
require(rgbif)
data <- occ_search(scientificName="Acer", limit=20000)
data <- format_bdvis(data$data, "rgbif")
mapgrid(data, ptype="species", title="Maple Trees in the World")
chronohorogram(data, title="Chronohorogram of Maple Tree Observations")
bdcalendarheat(data, title="Maple Tree Observations")
tempolar(data, title="Maple Tree Observations by Day", plottype="r", timescale="d")
tempolar(data, title="Maple Tree Observations by Week", plottype="r", timescale="w")
tempolar(data, title="Maple Tree Observations by Month", plottype="r", timescale="m")
distrigraph(data, ptype="cell")
distrigraph(data, ptype="species")
distrigraph(data, ptype="efforts")

1 2 3 4 5 6 7 8 9

pratishrai commented 4 years ago
library(bdvis)
library(rinat)
mammals <- read.csv("calafornia_mammals.csv", header = TRUE, sep = ',')
colnames(mammals)[24] <- "Latitude"
colnames(mammals)[25] <- "Longitude"
colnames(mammals)[4] <- "Date_collected"
colnames(mammals)[35] <- "Scientific_name"
mammals$Scientific_name <- as.character(mammals$Scientific_name)
mammals <- format_bdvis(mammals, source = "rinat")
bdcalendarheat(mammals, title = "Calendar Heat Map of Mammals")
bdcomplete(mammals)
chronohorogram(mammals)
distrigraph(mammals,ptype="cell",col="tomato")
distrigraph(mammals,ptype="species",ylab="Species", col="red")
distrigraph(mammals,ptype="efforts",col="blue")
distrigraph(mammals,ptype="efforts",col="red",type="s")
tempolar(mammals, color="green", title="Daily Record Collection", plottype="r", timescale="d")
tempolar(mammals, color="skyblue", title="Weekly Record Collection", plottype="p", timescale="w")
tempolar(mammals, color="yellow", title="Monthly Record Collection", plottype="r", timescale="m")
bdcomplete(mammals)
mapgrid(mammals,ptype="species", region="USA", title = "Mammals in California")
mapgrid(mammals,ptype="records", region="USA", title = "Mammals in California")
mapgrid(mammals,ptype="presence", region="USA", title = "Mammals in California")
mammals_mapgrid = bdcomplete(mammals, recs = 5)
mapgrid(mammals_mapgrid, ptype="complete", region="USA", title = "Mammals in California")

calander_heat_map

chronohorogram

distrigraph_cell

distrigraph_efferts

distrigraph_efferts_s

distrigraph_species

tempolar_daily

tempolar_monthly

tempolar_weekly

mapgrid_species

mapgrid_records

mapgrid_precense

mapgrid_complete

bdcomplete

I have used the "california-mammals" dataset from (https://www.inaturalist.org/projects/california-mammals) for the above visualizations.