Closed strengejacke closed 2 years ago
Package: marginaleffects
Check: examples
New result: ERROR
Running examples in ‘marginaleffects-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: tidy.marginaleffects
> ### Title: Tidy a 'marginaleffects' object
> ### Aliases: tidy.marginaleffects
>
> ### ** Examples
>
> mod <- lm(mpg ~ hp * wt + factor(gear), data = mtcars)
> mfx <- marginaleffects(mod)
Error in model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels) :
factor factor(gear) has new levels 3.0001, 4.0001, 5.0001
Calls: marginaleffects ... <Anonymous> -> predict.lm -> model.frame -> model.frame.default
Execution halted
Thanks @strengejacke Don't worry about it; I will handle this.
handle it on the marginaleffects
side. Nothing needs to change in insight
.
Package: marginaleffects
Check: re-building of vignette outputs
New result: WARNING
Error(s) in re-building vignettes:
---- re-building ‘contrasts.Rmd’ using rmarkdown
Quitting from lines 46-48 (contrasts.Rmd)
Error: processing vignette ‘contrasts.Rmd’ failed with diagnostics:
factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
--- re-building ‘predictions.Rmd’ using rmarkdown
Quitting from lines 36-41 (predictions.Rmd)
Error: processing vignette ‘predictions.Rmd’ failed with diagnostics:
factor factor(cyl) has new level 6.1875
--- failed re-building ‘predictions.Rmd’
(sorry, a bit longer)
Package: marginaleffects
Check: tests
New result: ERROR
Running ‘spelling.R’ [0s/0s]
Running ‘testthat.R’ [162s/82s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(marginaleffects)
> library(margins)
>
> test_check("marginaleffects")
Starting 2 test processes
â•â• Skipped tests â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•
• On CRAN (6)
• https://github.com/easystats/insight/issues/441 (1)
• unsupported data argument in get_predicted.lrm (1)
• works interactively (5)
â•â• Failed tests â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•
── Error (test-contrast.R:5:5): simple contrasts: no validity check ────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. ├─generics::tidy(marginaleffects(mod))
2. └─marginaleffects::marginaleffects(mod)
3. └─marginaleffects:::get_dydx_and_se(...)
4. └─marginaleffects:::get_dydx(...)
5. └─marginaleffects:::dydx_fun(...)
6. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
7. └─numDeriv:::grad.default(...)
8. └─marginaleffects:::func(x + eps, ...)
9. ├─marginaleffects::get_predict(...)
10. └─marginaleffects:::get_predict.default(...)
11. ├─stats::predict(model, newdata = newdata, type = type)
12. └─stats::predict.lm(model, newdata = newdata, type = type)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Error (test-contrast.R:29:5): bug be dead: all levels appear ────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(...)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.lm(model, newdata = newdata, type = type)
12. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
13. └─stats::model.frame.default(...)
── Error (test-counterfactual.R:12:5): marginal effects does not overwrite counterfactual rowid ──
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(...)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.glm(model, newdata = newdata, type = type)
12. └─stats::predict.lm(...)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Error (test-factor.R:6:5): factor before fitting or in formula is the same ──
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(mod1)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.lm(model, newdata = newdata, type = type)
12. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
13. └─stats::model.frame.default(...)
── Error (test-missing.R:10:5): original data with NAs do not pose problems in glm and lm. ──
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(gear) has new levels 3.0001, 4.0001, 5.0001
Backtrace:
â–ˆ
1. ├─testthat::expect_s3_class(tidy(marginaleffects(mod1)), "data.frame")
2. │ └─testthat::quasi_label(enquo(object), arg = "object")
3. │ └─rlang::eval_bare(expr, quo_get_env(quo))
4. ├─generics::tidy(marginaleffects(mod1))
5. └─marginaleffects::marginaleffects(mod1)
6. └─marginaleffects:::get_dydx_and_se(...)
7. └─marginaleffects:::get_dydx(...)
8. └─marginaleffects:::dydx_fun(...)
9. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
10. └─numDeriv:::grad.default(...)
11. └─marginaleffects:::func(x + eps, ...)
12. ├─marginaleffects::get_predict(...)
13. └─marginaleffects:::get_predict.default(...)
14. ├─stats::predict(model, newdata = newdata, type = type)
15. └─stats::predict.lm(model, newdata = newdata, type = type)
16. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
17. └─stats::model.frame.default(...)
── Error (test-missing.R:16:5): newdata with NAs do not pose problems in lm. ───
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(gear) has new level 3.62962962962963
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(...)
2. ├─marginaleffects::get_predict(...)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-pkg-MASS.R:23:5): glm.nb: marginaleffects: vs. margins ──────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(model)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.glm(model, newdata = newdata, type = type)
12. └─stats::predict.lm(...)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Error (test-pkg-MASS.R:32:5): glm.nb: marginaleffects: vs. Stata ────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. ├─base::merge(tidy(marginaleffects(model)), stata)
2. ├─generics::tidy(marginaleffects(model))
3. └─marginaleffects::marginaleffects(model)
4. └─marginaleffects:::get_dydx_and_se(...)
5. └─marginaleffects:::get_dydx(...)
6. └─marginaleffects:::dydx_fun(...)
7. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
8. └─numDeriv:::grad.default(...)
9. └─marginaleffects:::func(x + eps, ...)
10. ├─marginaleffects::get_predict(...)
11. └─marginaleffects:::get_predict.default(...)
12. ├─stats::predict(model, newdata = newdata, type = type)
13. └─stats::predict.glm(model, newdata = newdata, type = type)
14. └─stats::predict.lm(...)
15. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
16. └─stats::model.frame.default(...)
── Error (test-pkg-MASS.R:56:5): polr: predictions: no validity ────────────────
Error in `model.frame.default(Terms, newdata, na.action = function(x) x,
xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, type = "probs")
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.polr(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─MASS:::predict.polr(model, newdata = newdata, type = type)
6. ├─stats::model.frame(...)
7. └─stats::model.frame.default(...)
── Error (test-pkg-MASS.R:62:5): glm.nb: predictions: no validity ──────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(model)
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.glm(model, newdata = newdata, type = type)
6. └─stats::predict.lm(...)
7. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
8. └─stats::model.frame.default(...)
── Error (test-pkg-betareg.R:21:5): marginaleffects: vs. Stata ─────────────────
Error in `model.frame.default(delete.response(object$terms[[tnam]]), newdata,
na.action = na.action, xlev = object$levels[[tnam]])`: factor factor(batch) has new levels 1.0001, 2.0001, 3.0001, 4.0001, 5.0001, 6.0001, 7.0001, 8.0001, 9.0001, 10.0001
Backtrace:
â–ˆ
1. ├─base::merge(tidy(marginaleffects(mod)), stata)
2. ├─generics::tidy(marginaleffects(mod))
3. └─marginaleffects::marginaleffects(mod)
4. └─marginaleffects:::get_dydx_and_se(...)
5. └─marginaleffects:::get_dydx(...)
6. └─marginaleffects:::dydx_fun(...)
7. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
8. └─numDeriv:::grad.default(...)
9. └─marginaleffects:::func(x + eps, ...)
10. ├─marginaleffects::get_predict(...)
11. └─marginaleffects:::get_predict.default(...)
12. ├─stats::predict(model, newdata = newdata, type = type)
13. └─betareg:::predict.betareg(model, newdata = newdata, type = type)
14. ├─stats::model.frame(...)
15. └─stats::model.frame.default(...)
── Error (test-pkg-estimatr.R:22:5): lm_robust vs. stata ───────────────────────
Error in `model.frame.default(rhs_terms, newdata, na.action = na.action,
xlev = object[["xlevels"]])`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. ├─generics::tidy(marginaleffects(model))
2. └─marginaleffects::marginaleffects(model)
3. └─marginaleffects:::get_dydx_and_se(...)
4. └─marginaleffects:::get_dydx(...)
5. └─marginaleffects:::dydx_fun(...)
6. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
7. └─numDeriv:::grad.default(...)
8. └─marginaleffects:::func(x + eps, ...)
9. ├─marginaleffects::get_predict(...)
10. └─marginaleffects:::get_predict.default(...)
11. ├─stats::predict(model, newdata = newdata, type = type)
12. └─estimatr:::predict.lm_robust(model, newdata = newdata, type = type)
13. └─estimatr:::get_X(object, newdata, na.action)
14. ├─stats::model.frame(...)
15. └─stats::model.frame.default(...)
── Failure (test-pkg-nnet.R:34:5): multinom vs. Stata ──────────────────────────
mfx$estimate (`actual`) not equal to mfx$dydxstata (`expected`).
actual | expected
[1] -0.0327854 - NA [1]
[2] -0.0180934 - NA [2]
[3] NA - -0.1471264 [3]
[4] NA - -0.1644309 [4]
[5] 0.1538632 - 0.1538624 [5]
[6] 0.1570683 - 0.1570671 [6]
[7] 0.0260527 - 0.0260506 [7]
[8] 0.0254591 - 0.0254577 [8]
── Failure (test-pkg-pscl.R:53:5): marginaleffects: zeroinfl: no validity ──────
Class: predictions. Rows: 1. Columns: 8. type_col: TRUE. predicted_col: TRUE, se_col: TRUE
── Failure (test-pkg-pscl.R:54:5): marginaleffects: zeroinfl: no validity ──────
Class: predictions. Rows: 6. Columns: 11. type_col: TRUE. predicted_col: TRUE, se_col: TRUE
── Error (test-pkg-quantreg.R:6:5): marginaleffects: rq: Stata ─────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects:::expect_marginaleffects(model)
2. └─marginaleffects::marginaleffects(object, type = type) testthat/helper-marginaleffects.R:13:2
3. └─marginaleffects:::get_dydx_and_se(...)
4. └─marginaleffects:::get_dydx(...)
5. └─marginaleffects:::dydx_fun(...)
6. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
7. └─numDeriv:::grad.default(...)
8. └─marginaleffects:::func(x + eps, ...)
9. ├─marginaleffects::get_predict(...)
10. └─marginaleffects:::get_predict.default(...)
11. ├─stats::predict(model, newdata = newdata, type = type)
12. └─quantreg::predict.rq(model, newdata = newdata, type = type)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Failure (test-pkg-quantreg.R:16:5): predictions: rq: no validity ────────────
Class: predictions. Rows: 32. Columns: 5. type_col: TRUE. predicted_col: TRUE, se_col: FALSE
── Error (test-predictions.R:10:5): insight > 0.14.1 allows us to support `type` ──
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. ├─testthat::expect_warning(...)
2. │ └─testthat:::expect_condition_matching(...)
3. │ └─testthat:::quasi_capture(...)
4. │ ├─testthat:::.capture(...)
5. │ │ └─base::withCallingHandlers(...)
6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo))
7. └─marginaleffects::predictions(mod, type = "response")
8. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.lm(model, newdata = newdata, type = type)
12. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
13. └─stats::model.frame.default(...)
── Error (test-predictions.R:29:9): conf.level argument changes width of interval ──
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, newdata = nd, conf.level = L)
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-predictions.R:56:5): `variables` arg: logical ───────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, variables = "am")
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-predictions.R:61:5): `variables` arg: numeric ───────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, variables = "wt")
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-predictions.R:73:5): `variables` arg: logical + numeric ─────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, variables = c("am", "wt"))
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-predictions.R:110:5): `typical`: all logical ────────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(...)
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-predictions.R:116:5): `typical`: missing logical ────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new level 6.1875
Backtrace:
â–ˆ
1. └─marginaleffects::predictions(mod, newdata = typical(am = TRUE))
2. ├─marginaleffects::get_predict(model, newdata = newdata, type = predt)
3. └─marginaleffects:::get_predict.default(...)
4. ├─stats::predict(model, newdata = newdata, type = type)
5. └─stats::predict.lm(model, newdata = newdata, type = type)
6. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
7. └─stats::model.frame.default(...)
── Error (test-summary.R:7:5): simple summary output ───────────────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(mod)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.lm(model, newdata = newdata, type = type)
12. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
13. └─stats::model.frame.default(...)
── Error (test-summary.R:15:5): summary conf.level ─────────────────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(mod)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.lm(model, newdata = newdata, type = type)
12. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
13. └─stats::model.frame.default(...)
── Error (test-tidy.R:23:5): bug: emmeans contrast rename in binomial ──────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(cyl) has new levels 4.0001, 6.0001, 8.0001
Backtrace:
â–ˆ
1. └─marginaleffects::marginaleffects(x)
2. └─marginaleffects:::get_dydx_and_se(...)
3. └─marginaleffects:::get_dydx(...)
4. └─marginaleffects:::dydx_fun(...)
5. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
6. └─numDeriv:::grad.default(...)
7. └─marginaleffects:::func(x + eps, ...)
8. ├─marginaleffects::get_predict(...)
9. └─marginaleffects:::get_predict.default(...)
10. ├─stats::predict(model, newdata = newdata, type = type)
11. └─stats::predict.glm(model, newdata = newdata, type = type)
12. └─stats::predict.lm(...)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Error (test-tidy.R:44:5): tidy: with and without contrasts ──────────────────
Error in `model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)`: factor factor(gear) has new levels 3.0001, 4.0001, 5.0001
Backtrace:
â–ˆ
1. ├─generics::tidy(marginaleffects(model))
2. └─marginaleffects::marginaleffects(model)
3. └─marginaleffects:::get_dydx_and_se(...)
4. └─marginaleffects:::get_dydx(...)
5. └─marginaleffects:::dydx_fun(...)
6. ├─numDeriv::grad(func = inner, x = fitfram[[variable]], method = numDeriv_method)
7. └─numDeriv:::grad.default(...)
8. └─marginaleffects:::func(x + eps, ...)
9. ├─marginaleffects::get_predict(...)
10. └─marginaleffects:::get_predict.default(...)
11. ├─stats::predict(model, newdata = newdata, type = type)
12. └─stats::predict.lm(model, newdata = newdata, type = type)
13. ├─stats::model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14. └─stats::model.frame.default(...)
── Failure (test-typical.R:29:5): errors and warnings ──────────────────────────
`typical(model = mod, cyl = "2")` did not throw the expected error.
Backtrace:
â–ˆ
1. └─testthat::expect_error(typical(model = mod, cyl = "2"), regexp = "must be one of the factor levels")
2. └─testthat:::expect_condition_matching(...)
[ FAIL 29 | WARN 1 | SKIP 13 | PASS 294 ]
Error: Test failures
Execution halted
I think this is due to https://github.com/easystats/insight/issues/469.
I think this is due to easystats/insight#469.
Correct.
I have already updated marginaleffects
on Github and tested it against the Github version of insight
. It's only a matter of releasing the new version of marginaleffects
, which I plan to do shortly after insight
hits CRAN.
Thanks a lot for checking in about this potential issue. I really appreciate it.
Are there any urgent or nice-to-have issues related to insight::get_predicted()
that we might resolve before submitting a new CRAN version, or can it wait until the next release (after this planned release) of insight?
The only two issues that I hoped to address eventually are:
get_predicted.brmsfit
: random.only
could be supplied manually instead of hard-coded. Look into names(list(...))
, and if the user supplied it, override the hard-coded value by include_random
.get_predicted.coxph
: does not currently accept type
Neither seems particularly urgent.
Hi Vincent, can you check the issues related to marginaleffects and see whether it's something you have to or I can address?
https://win-builder.r-project.org/incoming_pretest/insight_0.15.0_20220103_142800/reverseDependencies/summary.txt