vitalwarley / research

3 stars 0 forks source link

KFC: Kinship Verification with Fair Contrastive Loss and Multi-Task Learning #50

Closed vitalwarley closed 10 months ago

vitalwarley commented 11 months ago

Encontrei-o enquanto procurava código para #49.

vitalwarley commented 10 months ago

Estou atualmente na seção 4.2, que trata da função de perda. Um dos parágrafos ficou relativamente difícil de entender. Usei o app consensus dentro do ChatGPT para obter esclarecimentos. A resposta é bem fundamentada, onde há as citações dos trabalhos que fundamentaram os conceitos necessários ao meu entendimento.

Um trecho:

The concept of fairness-aware contrastive loss function in facial recognition, as described in your query, involves several technical aspects: larger gradients, similarity to margin penalty, balancing unfairness, and achieving consistent compactness across races.

Mais detalhes no link anterior.

vitalwarley commented 10 months ago

Abstract

Introduction

Previous works on fairness in face recognition and face verification

Proposal

Objective

Problem 1: fairness and small datasets

Problem 2: boost (kinship verification?) accuracy and fairness simultaneously

Problem 3: improve kinship verification accuracy

Problem 4: fairness (in general?)

Schematic

image

Contributions

Related Work

Kinship Verification

Bias Mitigation

Related Work

Dataset Construction

image

Proposed Method

Model Structure

image

image

Certain facial features used to determine kinship might be closely linked with racial characteristics. When these racial characteristics are deliberately obscured to avoid bias, the model may lose some of the information that was helping it accurately verify kinship.

Loss Function

Questions

Gradients of Fair Contrastive Loss Function

Fairness Mechanism

  • This work employs two methods for improving fairness: adversarial learning and fair loss function. We use a race classifier in adversarial learning to remove racial information from feature vectors, which decreases standard deviation.

Experiment

Experimental Setting

Dataset

Implementation Details

  • In the experiment below, if we mention adversarial, it means we reverse the gradient of race classification like the red line in the indication in Figure 2. If we mention multi-task, it means we do not reverse the gradient of race classification, instead we just train the model normally with the green line in the indication in Figure 2.

Ablation Study

Effects of improving accuracy

image

image

Effects of improving fairness

image

Questions

Comparison with SOTA methods

image

image

image

Visualization and Analysis on Fairness

image

image

Conclusion


General Summary

The paper titled "KFC: Kinship Verification with Fair Contrastive Loss and Multi-Task Learning" by Jia Luo Peng, Keng Wei Chang, and Shang-Hong Lai, addresses the challenge of kinship verification in the presence of biases associated with gender, ethnicity, and age due to the lack of large-scale, diverse datasets. The authors propose a comprehensive solution involving a multi-task learning architecture with an attention module and introduce a fairness-aware contrastive loss function that incorporates a debiasing term with adversarial learning. The approach is evaluated on a newly constructed dataset named KinRace, designed to be robust against race-related biases.

Insights

Further Questions to Research

This research presents pivotal advancements in kinship verification accuracy and racial fairness, paving the way for more inclusive and ethically conscious AI models in facial recognition technologies.

vitalwarley commented 10 months ago

The reduction of race bias in models poses the question of whether similar mechanisms could be designed to mitigate other forms of biases, like age or gender biases, in datasets where corresponding labels might be unavailable or unreliable.

Essa questão, bem como o conteúdo anterior, foi gerado pelo GPT4 usando as minhas anotações. É bem pertinente ao que já estamos fazendo.

vitalwarley commented 10 months ago

Esse paper foi bem complexo. Foram cerca de 12h estudando seu conteúdo e às vezes conceitos ou paper citados. Preciso ser mais eficiente nos demais.

vitalwarley commented 10 months ago

Em grande parte, esse trabalho foi uma combinação dos seguintes trabalhos abaixo

Penso que nossos próximos passos devem ser com essa questão em mente. Nesse sentido, que trabalhos existem que foquem na remoção de viéses de gênero e idade? #41 foi um; há também #34.

vitalwarley commented 10 months ago

Contrastive loss inspired by Supervised Contrastive Learning for Facial Kinship Recognition (2021)

  • I think they build mostly upon this work -- network structure and hyperparameters.

Confirmo. O código deles foi adaptado do #26. Também citam explicitamente.