import torch
import torch.nn.functional as F
from random import random
from typing import Callable
## Problem 1 ##
## ##
## Arbitary x_train, y_train are given. ##
## In function predict(), you should return ##
## list y_test corresponding to x_test. ##
## y_train only contains 0 and 1. ##
## Therefore, use logstic regression. ##
## Made by @jangyoujin0917 ##
## ##
# NOTE : 1. Feel free to use torch.optim and tensor.
# 2. In this problem, we will only grade "predict" function.
# Function "training" is only for modularization.
def training(x_train : list, y_train : list) -> tuple: # DO NOT MODIFY FUNCTION NAME
y_min = min(y_train)
y_max = max(y_train)
normalize = lambda y : (y - y_min)/(y_max - y_min)
normalized_y_train = [[normalize(y)] for y in y_train]
w = torch.tensor(1., requires_grad=True)
b = torch.tensor(0., requires_grad=True)
alpha = 0.0001
epoch = 1000
x_train_tensor = torch.tensor(x_train, requires_grad=True)
y_train_tensor = torch.tensor(normalized_y_train, requires_grad=True)
optimizer = torch.optim.SGD([w, b], lr=alpha)
for _ in range(epoch):
optimizer.zero_grad()
hypothesis = torch.sigmoid(x_train_tensor * w + b)
error = -(y_train_tensor * torch.log(hypothesis) + (1 - y_train_tensor) * torch.log(1 - hypothesis)).mean()
error.backward()
optimizer.step()
return w.data.item() * (y_max - y_min), b.data.item() * (y_max - y_min) + y_min
def predict(x_train : list, y_train : list, x_test : list) -> list: # DO NOT MODIFY FUNCTION NAME
w, b = training(x_train, y_train)
temp = torch.sigmoid(torch.tensor(x_test) * (torch.tensor(w)) + torch.tensor(b))
return [0 if i[0] < 0.5 else 1 for i in temp.tolist()]
### IMPLEMENT FROM HERE
if __name__ == "__main__":
# This is very simple case. Passing this testcase do not mean that the code is perfect.
# Please consider for the practial problems when score is not high.
x_train = [[0., 1.], [1., 0.], [2., 5.], [3., 1.], [4., 2.]]
y_train = [0., 0., 1., 0., 1.]
x_test = [[7., 2.], [1.5, 1.], [2.5, 0.5]]
y_test = predict(x_train, y_train, x_test)
print(y_test)
Problem
Week 3_Problem 1
Source Code
Description
.
Output (Optional)
No response