import torch
import torch.nn.functional as F
from random import random
from typing import Callable
## Problem 1 ##
## ##
## Arbitary x_train, y_train are given. ##
## In function predict(), you should return ##
## list y_test corresponding to x_test. ##
## y_train only contains 0 and 1. ##
## Therefore, use logstic regression. ##
## Made by @jangyoujin0917 ##
## ##
# NOTE : 1. Feel free to use torch.optim and tensor.
# 2. In this problem, we will only grade "predict" function.
# Function "training" is only for modularization.
def training(x_train : list[list[float]], y_train : list[float]) -> tuple[list[float], float]: # DO NOT MODIFY FUNCTION NAME
x_train = torch.tensor(x_train)
y_train = torch.tensor(y_train)
w = torch.zeros(len(x_train[0]), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
optimizer = torch.optim.SGD([w, b], lr=1e-3)
for _ in range(10**4):
loss = F.binary_cross_entropy(torch.sigmoid(x_train.matmul(w) + b), y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return (w, b)
def predict(x_train : list[list[float]], y_train : list[float], x_test : list[list[float]]) -> list[float]: # DO NOT MODIFY FUNCTION NAME
w, b = training(x_train, y_train)
x_test = torch.tensor(x_test)
return torch.sigmoid(x_test.matmul(w) + b)
if __name__ == "__main__":
# This is very simple case. Passing this testcase do not mean that the code is perfect.
# Please consider for the practial problems when score is not high.
x_train = [[0., 1.], [1., 0.], [2., 5.], [3., 1.], [4., 2.]]
y_train = [0., 0., 1., 0., 1.]
x_test = [[7., 2.], [1.5, 1.], [2.5, 0.5]]
y_test = predict(x_train, y_train, x_test)
print(y_test.tolist())
Problem
Week 3_Problem 1
Source Code
Description
로지스틱 회귀
Output (Optional)
No response