vlfeat / matconvnet

MatConvNet: CNNs for MATLAB
Other
1.4k stars 753 forks source link

Trouble Training on Tiny ImageNet #1007

Open djsaunde opened 7 years ago

djsaunde commented 7 years ago

I'm attempting to train a network on the Tiny Imagenet, a subset of ImageNet created for use in the Stanford cs231n course.

I've created a large network (code below), and have tried tweaking its structure and network hyperparameters quite a bit, but I haven't been able to get the network's classification error significantly lower than random (there are 200 image categories in the Tiny ImageNet dataset; random guessing would yield about 99.5% error rate).

Does anyone have any insight into why might this be happening, or some example code that trains a network successfully on the Tiny ImageNet dataset? I hope I am not overlooking something silly.

function [net, info] = train_tiny_imagenet_network(varargin)
% TRAIN_TINY_IMAGENET_NETWORK Train a deep neural network to classify the 
% Tiny Imagenet dataset.
%
% You must run generate_TINY_IMAGENET in the datasets folder with the
% default options in order to prepare the images for this network.

% default optional argument settings
opts.numEpochs = -1;
opts.imdb = 'imdb.mat';

% parsing optional arguments
opts = vl_argparse(opts, varargin);

% load settings to get imdb path
SystemSettings;

% pass execution to the 'train_helper' function to set up network training
[net, info] = train.train_helper(@init_net, ...
    'tiny_imagenet_network', fullfile(datasets_path, 'tiny_imagenet', opts.imdb), ...
    'numEpochs', opts.numEpochs);

function net = init_net()

lr = [.1 2] ;

% Define network
net.layers = {} ;

% Block 1
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,3,128, 'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,128,128, 'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
                           'method', 'max', ...
                           'pool', [2 2], ...
                           'stride', 1, ...
                           'pad', [0 1 0 1]) ;

% Block 2
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,128,128, 'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
               'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,128,128, 'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
                           'method', 'max', ...
                           'pool', [2 2], ...
                           'stride', 1, ...
                           'pad', [0 1 0 1]) ;
% Block 3
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,128,128,'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
                           'method', 'max', ...
                           'pool', [2 2], ...
                           'stride', 1, ...
                           'pad', [0 1 0 1]) ;

% Block 4
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(3,3,128,128,'single'), zeros(1,128,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 1) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
                           'method', 'max', ...                           
               'pool', [2 2], ...
                           'stride', 1, ...
                           'pad', [0 1 0 1]) ;

% Block 7
net.layers{end+1} = struct('type', 'conv', ...
               'weights', {{0.01*randn(64,64,128,400,'single'), zeros(1,400,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(1,1,400,400,'single'), zeros(1,400,'single')}}, ...
                           'learningRate', lr, ...                           
                           'stride', 1, ...
                           'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
                           'weights', {{0.01*randn(1,1,400,200,'single'), zeros(1,200,'single')}}, ...
                           'learningRate', lr, ...
                           'stride', 1, ...
                           'pad', 0) ;

% Loss layer
net.layers{end+1} = struct('type', 'softmaxloss') ;

% Meta parameters
net.meta.inputSize = [64 64 3] ;
net.meta.trainOpts.learningRate = 0.000001 * ones(1, 100);
net.meta.trainOpts.weightDecay = 0.000001 ;
net.meta.trainOpts.batchSize = 100 ;
net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ;

% Fill in default values
net = vl_simplenn_tidy(net) ;
hunterlew commented 7 years ago

@djsaunde I failed to upload my result, reporting ‘Application Error: an error occured in the application and your page could not be served. If you are the application owner, check your logs for details’. I’ve checked the file format and make sure it was correct. Could u solve the problem?