WARNING 11-14 02:19:07 _custom_ops.py:20] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'")
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.3 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04) 9.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.31
Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.11.0-40-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.77
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090
GPU 4: NVIDIA GeForce RTX 3090
GPU 5: NVIDIA GeForce RTX 3090
GPU 6: NVIDIA GeForce RTX 3090
GPU 7: NVIDIA GeForce RTX 3090
Nvidia driver version: 535.183.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
Stepping: 7
CPU MHz: 833.694
CPU max MHz: 3200.0000
CPU min MHz: 800.0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 32 MiB
L3 cache: 44 MiB
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] numpy==1.26.3
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.1.105
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] torch==2.4.0+cu121
[pip3] torchaudio==2.4.0+cu121
[pip3] torchvision==0.19.0+cu121
[pip3] transformers==4.46.2
[pip3] triton==3.0.0
[conda] cuda-cccl_linux-64 12.6.77 0 nvidia
[conda] cuda-compiler 12.6.2 0 nvidia
[conda] cuda-crt-dev_linux-64 12.6.77 0 nvidia
[conda] cuda-crt-tools 12.6.77 0 nvidia
[conda] cuda-cudart 12.6.77 0 nvidia
[conda] cuda-cudart-dev 12.6.77 0 nvidia
[conda] cuda-cudart-dev_linux-64 12.6.77 0 nvidia
[conda] cuda-cudart-static 12.6.77 0 nvidia
[conda] cuda-cudart-static_linux-64 12.6.77 0 nvidia
[conda] cuda-cudart_linux-64 12.6.77 0 nvidia
[conda] cuda-cuobjdump 12.6.77 0 nvidia
[conda] cuda-cuxxfilt 12.6.77 0 nvidia
[conda] cuda-driver-dev_linux-64 12.6.77 0 nvidia
[conda] cuda-nvcc 12.6.77 0 nvidia
[conda] cuda-nvcc-dev_linux-64 12.6.77 0 nvidia
[conda] cuda-nvcc-impl 12.6.77 0 nvidia
[conda] cuda-nvcc-tools 12.6.77 0 nvidia
[conda] cuda-nvcc_linux-64 12.6.77 0 nvidia
[conda] cuda-nvdisasm 12.6.77 0 nvidia
[conda] cuda-nvprune 12.6.77 0 nvidia
[conda] cuda-nvvm-dev_linux-64 12.6.77 0 nvidia
[conda] cuda-nvvm-impl 12.6.77 0 nvidia
[conda] cuda-nvvm-tools 12.6.77 0 nvidia
[conda] cuda-version 12.6 3 nvidia
[conda] numpy 1.26.3 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi
[conda] torch 2.4.0+cu121 pypi_0 pypi
[conda] torchaudio 2.4.0+cu121 pypi_0 pypi
[conda] torchvision 0.19.0+cu121 pypi_0 pypi
[conda] transformers 4.46.2 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post2.dev333+g19682023.d20241110
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX NODE NODE SYS SYS SYS SYS 0-15,32-47 0 N/A
GPU1 PIX X NODE NODE SYS SYS SYS SYS 0-15,32-47 0 N/A
GPU2 NODE NODE X PIX SYS SYS SYS SYS 0-15,32-47 0 N/A
GPU3 NODE NODE PIX X SYS SYS SYS SYS 0-15,32-47 0 N/A
GPU4 SYS SYS SYS SYS X PIX NODE NODE 16-31,48-63 1 N/A
GPU5 SYS SYS SYS SYS PIX X NODE NODE 16-31,48-63 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X PIX 16-31,48-63 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE PIX X 16-31,48-63 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
CUDA_MODULE_LOADING=LAZY
How you are installing vllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e .
Before submitting a new issue...
[X] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Your current environment
How you are installing vllm
Before submitting a new issue...