Closed ccruttjr closed 2 hours ago
Hi @ccruttjr could you please do a quick try with "--privileged=true" in docker run?
thanks, -yuan
Hi @ccruttjr could you please do a quick try with "--privileged=true" in docker run?
thanks, -yuan
@zhouyuan
Progress! But still failing. I tried running the two examples I showed originally but added --privileged=true
as you said and got these new logs which have a different failure point. I also tried prepending numactl --interleave=all
on separate runs and got the same outcome.
```
$ docker run --privileged=true -it --rm --network=host --ipc=host -v /local/apps/tools/aiModels:/root/.cache/huggingface --env "HUGGING_FACE_HUB_TOKEN=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" --env "VLLM_CPU_KVCACHE_SPACE=512" --env "VLLM_CPU_OMP_THREADS_BIND=0-63|64-127" vllm-cpu-env --model meta-llama/Llama-3.1-70B-Instruct -tp 2 [358/1665]INFO 11-22 01:30:05 api_server.py:592] vLLM API server version 0.6.4.post2.dev87+ge7a8341c
INFO 11-22 01:30:05 api_server.py:593] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='meta-llama/Llama-3.1-70B-Instruct', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=
It looks like the issue is on ZMQ now, can you please also try to add --shm-size=4g
in docker run?
future: <Task finished name='Task-2' coro=<MQLLMEngineClient.run_output_handler_loop() done, defined at /usr/local/lib/python3.10/dist-packages/vllm/engine/multiprocessing/client.py:178> exception=ZMQError('Operation not supported')>
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/multiprocessing/client.py", line 184, in run_output_handler_loop
while await self.output_socket.poll(timeout=VLLM_RPC_TIMEOUT
File "/usr/local/lib/python3.10/dist-packages/zmq/_future.py", line 400, in poll
raise _zmq.ZMQError(_zmq.ENOTSUP)
thanks, -yuan
It looks like the issue is on ZMQ now, can you please also try to add
--shm-size=4g
in docker run?
@zhouyuan
Tried that and got two different errors depending on how I "bound" the cores.
```
docker run --shm-size=4g --privileged=true -it --rm --network=host --ipc=host -v /local/apps/tools/aiModels:/root/.cache/huggingface --env "HUGGING_FACE_HUB_TOKEN=
```
$ docker run --privileged=true -it --shm-size=4g --rm --network=host --ipc=host -v /local/apps/tools/aiModels:/root/.cache/huggingface --env "HUGGING_FACE_HUB_TOKEN=
@ccruttjr
I tried the latest code locally but could not reproduce this issue. Could you please also do a test with lower KV cache size?
--env "VLLM_CPU_KVCACHE_SPACE=512"
on TP=2 case it will require 1024 GB memory
Thanks, -yuan
yep I'm stupid I decreased the kvcache space and it worked ❤️❤️❤️
yep I'm stupid I decreased the kvcache space and it worked ❤️❤️❤️
@ccruttjr no problem, glad to hear it worked 👍
Could you please close this as it's fixed? Will try to improve the example for CPU to highlight the memory requirements on tensor parallel
thanks, -yuan
Your current environment
Details
```text PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Oracle Linux Server 8.10 (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3.0.1) Clang version: Could not collect CMake version: version 3.26.5 Libc version: glibc-2.28 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-301.163.5.2.el8uek.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L40S GPU 1: NVIDIA L40S Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel BIOS Vendor ID: Intel CPU family: 6 Model: 143 Model name: Intel(R) Xeon(R) Gold 6448Y BIOS Model name: Intel(R) Xeon(R) Gold 6448Y Stepping: 8 CPU MHz: 2100.000 BogoMIPS: 4200.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 2048K L3 cache: 61440K NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pyzmq==26.2.0 [pip3] torch==2.5.1 [pip3] torchvision==0.20.1 [pip3] transformers==4.46.2 [pip3] triton==3.1.0 [conda] No relevant packages ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.4.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X SYS NODE NODE SYS SYS 0,2,4,6,8,10 0 N/A GPU1 SYS X SYS SYS NODE NODE 1,3,5,7,9,11 1 N/A NIC0 NODE SYS X PIX SYS SYS NIC1 NODE SYS PIX X SYS SYS NIC2 SYS NODE SYS SYS X PIX NIC3 SYS NODE SYS SYS PIX X Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks NIC Legend: NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 LD_LIBRARY_PATH=/root/.vllmPythonVenv/lib/python3.12/site-packages/cv2/../../lib64:/opt/rh/gcc-toolset-11/root/usr/lib64:/opt/rh/gcc-toolset-11/root/usr/lib:/opt/rh/gcc-toolset-11/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-11/root/usr/lib/dyninst:/usr/local/cuda/lib64:/opt/rh/gcc-toolset-11/root/usr/lib64:/opt/rh/gcc-toolset-11/root/usr/lib:/opt/rh/gcc-toolset-11/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-11/root/usr/lib/dyninst:/usr/local/cuda/lib64:/opt/rh/gcc-toolset-11/root/usr/lib64:/opt/rh/gcc-toolset-11/root/usr/lib:/opt/rh/gcc-toolset-11/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-11/root/usr/lib/dyninst CUDA_MODULE_LOADING=LAZY ```
How would you like to use vllm
What I did along with following the installation with CPU guide and deploy with docker guide
this works fine, it is when I attempt to set
VLLM_CPU_OMP_THREADS_BIND
and-tp 2
that I run into issues. Since I have 128 cores with 2 CPUs (64 on each CPU), I triedand get a numa error:
Details
```log INFO 11-21 23:44:46 api_server.py:592] vLLM API server version 0.6.4.post2.dev87+ge7a8341c INFO 11-21 23:44:46 api_server.py:593] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='meta-llama/Llama-3.1-70B-Instruct', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=Also, just as an FYI, simply setting
--env "OMP_NUM_THREADS=127"
works, although I cannot set-tp 2
. Seeing as my CPUs might alternate core ids, I tried doing0,2,4,6...124,126|1,3,5,7...125,127
instead, sowhich also failed.
ChatGPT also recommended I try prepending
numactl --interleave=all
to my docker command but that didn't work either.Any ideas of what I am missing?