vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
30.14k stars 4.55k forks source link

[Bug]: TypeError: 'TokenizerGroup' object is not callable #3879

Closed Stosan closed 7 months ago

Stosan commented 7 months ago

Your current environment

PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.31

Python version: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-28-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 545.23.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             16
On-line CPU(s) list:                0-15
Thread(s) per core:                 2
Core(s) per socket:                 8
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:                           7
CPU MHz:                            2200.204
BogoMIPS:                           4400.40
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          256 KiB
L1i cache:                          256 KiB
L2 cache:                           8 MiB
L3 cache:                           38.5 MiB
NUMA node0 CPU(s):                  0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.1.2
[pip3] triton==2.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] pytorch-triton            3.0.0+a9bc1a3647          pypi_0    pypi
[conda] torch                     2.1.2                    pypi_0    pypi
[conda] torchaudio                2.1.1+cu121              pypi_0    pypi
[conda] torchvision               0.16.2                   pypi_0    pypi
[conda] triton                    2.1.0                    pypi_0    pypiROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.3.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

Using mistralai/Mistral-7B-Instruct-V0.2

It outputs this error TypeError: 'TokenizerGroup' object is not callable

njhill commented 7 months ago

@Stosan could you try with the latest release? And please share the whole stacktrace from the log if the error still occurs.

Stosan commented 7 months ago

Updated

PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.31

Python version: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-28-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 545.23.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             16
On-line CPU(s) list:                0-15
Thread(s) per core:                 2
Core(s) per socket:                 8
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:                           7
CPU MHz:                            2200.204
BogoMIPS:                           4400.40
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          256 KiB
L1i cache:                          256 KiB
L2 cache:                           8 MiB
L3 cache:                           38.5 MiB
NUMA node0 CPU(s):                  0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.1.2
[pip3] triton==2.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] pytorch-triton            3.0.0+a9bc1a3647          pypi_0    pypi
[conda] torch                     2.1.2                    pypi_0    pypi
[conda] torchaudio                2.1.1+cu121              pypi_0    pypi
[conda] torchvision               0.16.2                   pypi_0    pypi
[conda] triton                    2.1.0                    pypi_0    pypiROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.0.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

I now use vllm 0.4.0 but the error still persist

Heaven-zhw commented 6 months ago

Updated

PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.31

Python version: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-28-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 545.23.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             16
On-line CPU(s) list:                0-15
Thread(s) per core:                 2
Core(s) per socket:                 8
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:                           7
CPU MHz:                            2200.204
BogoMIPS:                           4400.40
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          256 KiB
L1i cache:                          256 KiB
L2 cache:                           8 MiB
L3 cache:                           38.5 MiB
NUMA node0 CPU(s):                  0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.1.2
[pip3] triton==2.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] pytorch-triton            3.0.0+a9bc1a3647          pypi_0    pypi
[conda] torch                     2.1.2                    pypi_0    pypi
[conda] torchaudio                2.1.1+cu121              pypi_0    pypi
[conda] torchvision               0.16.2                   pypi_0    pypi
[conda] triton                    2.1.0                    pypi_0    pypiROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.0.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

I now use vllm 0.4.0 but the error still persist

Hello! I met the same error. Have you solved the problem?