vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
30.88k stars 4.7k forks source link

[Bug]: Prefix Caching fails with fp8 quantized KV Cache #3880

Open amogkam opened 7 months ago

amogkam commented 7 months ago

Your current environment

PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.27.9
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.1.58+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             2
On-line CPU(s) list:                0,1
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) CPU @ 2.00GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 1
Socket(s):                          1
Stepping:                           3
BogoMIPS:                           4000.33
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          32 KiB (1 instance)
L1i cache:                          32 KiB (1 instance)
L2 cache:                           1 MiB (1 instance)
L3 cache:                           38.5 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Mitigation; PTE Inversion
Vulnerability Mds:                  Vulnerable; SMT Host state unknown
Vulnerability Meltdown:             Vulnerable
Vulnerability Mmio stale data:      Vulnerable
Vulnerability Retbleed:             Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:           Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Vulnerable

Versions of relevant libraries:
[pip3] numpy==1.25.2
[pip3] torch==2.1.2
[pip3] torchaudio==2.2.1+cu121
[pip3] torchdata==0.7.1
[pip3] torchsummary==1.5.1
[pip3] torchtext==0.17.1
[pip3] torchvision==0.17.1+cu121
[pip3] triton==2.1.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.0.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X  0-1     N/A     N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

Error in triton kernel when using prefix caching and a quantized model

from vllm import LLM, SamplingParams

prompts = ['0UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '0UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '0UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '0UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '0UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '1UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '1UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '1UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '1UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '1UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '2UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '2UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '2UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '2UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '2UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '3UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '3UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '3UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '3UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '3UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '4UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '4UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '4UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '4UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA',
 '4UAqFzWsDK4FrUMp48Y3tT3QDgAL47D1qXIaSyZPaE1pu1lJo7XBetF5gIRHYH7LKBKxJsllLODfU25035HyRrY03K6JBO94XfLEN0pThnXuYgjRcJ40UA']

sampling_params = SamplingParams(temperature=0, skip_special_tokens=False)
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf", kv_cache_dtype="fp8_e5m2", max_model_len=560, enable_prefix_caching=True)
outputs = llm.generate(prompts, sampling_params)

Fails with

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
[/usr/local/lib/python3.10/dist-packages/triton/compiler/code_generator.py](https://localhost:8080/#) in ast_to_ttir(fn, signature, specialization, constants, debug, arch)
   1123     try:
-> 1124         generator.visit(fn.parse())
   1125     except CompilationError as e:

AssertionError: First input (fp16) and second input (uint8) must have the same dtype!

The above exception was the direct cause of the following exception:

CompilationError                          Traceback (most recent call last)
<string> in _fwd_kernel(Q, K, V, K_cache, V_cache, B_Loc, sm_scale, B_Start_Loc, B_Seqlen, B_Ctxlen, block_size, x, Out, stride_b_loc_b, stride_b_loc_s, stride_qbs, stride_qh, stride_qd, stride_kbs, stride_kh, stride_kd, stride_vbs, stride_vh, stride_vd, stride_obs, stride_oh, stride_od, stride_k_cache_bs, stride_k_cache_h, stride_k_cache_d, stride_k_cache_bl, stride_k_cache_x, stride_v_cache_bs, stride_v_cache_h, stride_v_cache_d, stride_v_cache_bl, num_queries_per_kv, BLOCK_M, BLOCK_DMODEL, BLOCK_N, grid, num_warps, num_stages, extern_libs, stream, warmup, device, device_type)

[/usr/local/lib/python3.10/dist-packages/triton/compiler/code_generator.py](https://localhost:8080/#) in ast_to_ttir(fn, signature, specialization, constants, debug, arch)
   1131         if node is None:
   1132             raise
-> 1133         raise CompilationError(fn.src, node, repr(e)) from e
   1134     ret = generator.module
   1135     # module takes ownership of the context

CompilationError: at 96:24:                 (offs_d[:, None] % x) * stride_k_cache_x)
        off_v = (
            bn[:, None] * stride_v_cache_bs +
            cur_kv_head * stride_v_cache_h +
            offs_d[None, :] * stride_v_cache_d +
            (start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
        k = tl.load(K_cache + off_k,
                    mask=(start_n + offs_n[None, :]) < cur_batch_ctx_len,
                    other=0.0)

        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k)
                        ^
AssertionError('First input (fp16) and second input (uint8) must have the same dtype!')
robertgshaw2-neuralmagic commented 7 months ago

To support this, we will need to re-write the Triton kernel to support fp8

For now, will disable prefix caching. We should open up an RFC for improvements to APC

jon-chuang commented 3 months ago

Can be closed

github-actions[bot] commented 2 weeks ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!