vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
29.98k stars 4.53k forks source link

[Bug]: nsys cannot track the cuda kernel called by the process except rank 0 #5132

Open crazy-JiangDongHua opened 5 months ago

crazy-JiangDongHua commented 5 months ago

Your current environment

PyTorch version: 2.2.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.35

Python version: 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] (64-bit runtime)
Python platform: Linux-5.4.56.bsk.9-amd64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.129.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.3
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.3
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          128
On-line CPU(s) list:             0-127
Vendor ID:                       GenuineIntel
BIOS Vendor ID:                  Intel(R) Corporation
Model name:                      Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
BIOS Model name:                 Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
CPU family:                      6
Model:                           106
Thread(s) per core:              2
Core(s) per socket:              32
Socket(s):                       2
Stepping:                        6
CPU max MHz:                     3500.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4600.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities
Virtualization:                  VT-x
L1d cache:                       3 MiB (64 instances)
L1i cache:                       2 MiB (64 instances)
L2 cache:                        80 MiB (64 instances)
L3 cache:                        108 MiB (2 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-31,64-95
NUMA node1 CPU(s):               32-63,96-127
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] numpy==1.22.2
[pip3] onnx==1.14.0
[pip3] pytorch-quantization==2.1.2
[pip3] torch==2.2.1
[pip3] torch-tensorrt==1.5.0.dev0
[pip3] torchdata==0.7.0a0
[pip3] torchtext==0.16.0a0
[pip3] torchvision==0.16.0a0
[pip3] triton==2.2.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.0.post1
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.5 8.0 8.6 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    PXB     SYS     SYS     SYS     0-31,64-95      0             N/A
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    PXB     SYS     SYS     SYS     0-31,64-95      0             N/A
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    SYS     PXB     SYS     SYS     0-31,64-95      0             N/A
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    SYS     PXB     SYS     SYS     0-31,64-95      0             N/A
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS     SYS     PXB     SYS     32-63,96-127    1             N/A
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS     SYS     PXB     SYS     32-63,96-127    1             N/A
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS     SYS     SYS     PXB     32-63,96-127    1             N/A
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS     SYS     SYS     PXB     32-63,96-127    1             N/A
NIC0    PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS      X      SYS     SYS     SYS
NIC1    SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS      X      SYS     SYS
NIC2    SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS      X      SYS
NIC3    SYS     SYS     SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3

🐛 Describe the bug

I try to profile vllm with nsys and run mixtral inference with tp_size = 8. When I opened the generated req file with nsys gui, I found that except for the rank 0 process, other processes did not capture the cuda kernel call, that is, there was no cuda hw line. This is the screenshot of nsys gui. timeline

Below are nsys command and python script.

# nsys cmd
nsys profile -t cuda,nvtx  --sample=none  --cpuctxsw=none -o org_tp  python3 offline_inference.py
# sample code for this problem, offline_inference.py
from vllm import LLM, SamplingParams

prompt_token_ids = [
                    [100 for i in range(8 * 1024)], # 8k
                    [100 for i in range(8 * 1024)], # 8k
                    [100 for i in range(8 * 1024)], # 8k
                    [100 for i in range(8 * 1024)], # 8k
                    [100 for i in range(32 * 1024)] # 32k
                   ] 
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=2)

# Create an LLM.
llm = LLM(model="mistralai/Mixtral-8X7B-Instruct-v0.1", 
          tensor_parallel_size = 8, 
          disable_log_stats=False,
          enforce_eager=True)

# Generate texts from the prompts. The output is a list of RequestOutput objects
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
crazy-JiangDongHua commented 5 months ago

I also try to profile each worker like this : How ray support Nsight System Profiler 。But it has no effect, still no cuda hw line

# in vllm/executor/ray_gpu_executor.py:95
worker = ray.remote(
    num_cpus=0,
    num_gpus=num_gpus,
    scheduling_strategy=scheduling_strategy,
    runtime_env={ "nsight": "default"},
    **ray_remote_kwargs,
)(RayWorkerVllm).remote(self.model_config.trust_remote_code)
crazy-JiangDongHua commented 5 months ago

This is a ray problem, which has just been solved. The detailed solution is in https://github.com/ray-project/ray/issues/42139#issuecomment-2141724352

github-actions[bot] commented 2 weeks ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!