Open czhcc opened 4 months ago
13B
model in fp16
requires 24.2GBytes
GPU RAM.
Your GPU only have 24.0 GBytes RAM.
This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!
Your current environment
Collecting environment information... PyTorch version: 2.3.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.30.0 Libc version: glibc-2.31
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-156-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A40-24Q Nvidia driver version: 535.129.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.2 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.2 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 45 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 8 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz Stepping: 6 CPU MHz: 2394.374 BogoMIPS: 4788.74 Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB L1i cache: 256 KiB L2 cache: 10 MiB L3 cache: 192 MiB NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] torch==2.3.0 [pip3] transformers==4.42.3 [pip3] triton==2.3.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] torch 2.3.0 pypi_0 pypi [conda] transformers 4.42.3 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.5.0.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: [4mGPU0 CPU Affinity NUMA Affinity GPU NUMA ID[0m GPU0 X 0-7 0 N/A
Legend:
X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks
How would you like to use vllm
使用如下命令加载百川模型 python -m vllm.entrypoints.openai.api_server --port 9018 --served-model-name emb --model /models/Baichuan2-13B-Chat-v2 --trust-remote-code 出现 torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 异常,但