Closed Juelianqvq closed 3 weeks ago
Similar issue here.
Environment:
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-348.el8.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
BIOS Vendor ID: Intel(R) Corporation
Model name: Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz
BIOS Model name: Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
Frequency boost: enabled
CPU max MHz: 2601.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid sgx_lc fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 96 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.2+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] pyzmq==26.1.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.0
[pip3] triton==3.0.0
[conda] flashinfer 0.1.2+cu121torch2.4 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] pyzmq 26.1.0 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] transformers 4.44.0 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 CPU AffinityNUMA Affinity GPU NUMA ID
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 PXB NODE SYS SYS SYS NODE 0-31,64-95 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 PXB NODE SYS SYS SYS NODE 0-31,64-95 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 NODE PXB SYS SYS SYS NODE 0-31,64-95 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 NODE PXB SYS SYS SYS NODE 0-31,64-95 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS NODE PXB NODE SYS 32-63,96-127 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS NODE PXB NODE SYS 32-63,96-127 1 N/A
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS NODE NODE PXB SYS 32-63,96-127 1 N/A
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS NODE NODE PXB SYS 32-63,96-127 1 N/A
NIC0 PXB PXB NODE NODE SYS SYS SYS SYS X NODE SYS SYS SYS NODE
NIC1 NODE NODE PXB PXB SYS SYS SYS SYS NODE X SYS SYS SYS NODE
NIC2 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS X NODE NODE SYS
NIC3 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS NODE X NODE SYS
NIC4 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS NODE NODE X SYS
NIC5 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_2
NIC1: mlx5_3
NIC2: mlx5_4
NIC3: mlx5_5
NIC4: mlx5_6
NIC5: mlx5_bond_0
If I use
export VLLM_ATTENTION_BACKEND=FLASH_ATTN
CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve /PATH_TO_MODEL/Meta-Llama-3.1-70B-Instruct/ --tensor-parallel-size 4 --port 20000
The generated text is Fine.
But if I use
export VLLM_ATTENTION_BACKEND=FLASHINFER
CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve /PATH_TO_MODEL/Meta-Llama-3.1-70B-Instruct/ --tensor-parallel-size 4 --port 20000
The output is meaningless. And I have to set max_tokens=50
to stop the model generate repeated meaningless text.
The query body is simple:
{
"model": "Meta-Llama-3.1-70B-Instruct/",
"messages": [
{
"role": "user",
"content": "Hello, who are you?"
}
],
"temperature": 0.5,
"max_tokens": 50
}
Your current environment
🐛 Describe the bug
1.flashinfer + chunked prefill outputs garbage 2.missing support of copy / swap blocks with flashinfer backend?