vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
30.18k stars 4.56k forks source link

[Bug]: qwen2-72b-instruct model with RuntimeError: CUDA error: an illegal memory access was encountered #6776

Open izhuhaoran opened 3 months ago

izhuhaoran commented 3 months ago

Your current environment

PyTorch version: 2.3.0a0+ebedce2
Is debug build: False
CUDA used to build PyTorch: 12.3
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35

Python version: 3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-4.19.91-014-kangaroo.2.10.13.5c249cdaf.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.54.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          48
On-line CPU(s) list:             0-47
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) Processor @ 2.90GHz
CPU family:                      6
Model:                           106
Thread(s) per core:              1
Core(s) per socket:              48
Socket(s):                       1
Stepping:                        6
BogoMIPS:                        5800.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd avx512vbmi umip pku avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm md_clear arch_capabilities
Virtualization:                  VT-x
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       2.3 MiB (48 instances)
L1i cache:                       1.5 MiB (48 instances)
L2 cache:                        60 MiB (48 instances)
L3 cache:                        48 MiB (1 instance)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-47
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] mypy==1.9.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.24.4
[pip3] onnx==1.15.0rc2
[pip3] optree==0.10.0
[pip3] pytorch-quantization==2.1.2
[pip3] torch==2.3.0a0+ebedce2
[pip3] torch-tensorrt==2.3.0a0
[pip3] torchdata==0.7.1a0
[pip3] torchtext==0.17.0a0
[pip3] torchvision==0.18.0a0
[pip3] transformers==4.42.4
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    NIC0    NIC1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV6     NV6     NV6     PHB     PHB     0-47            N/A             N/A
GPU1    NV6      X      NV6     NV6     PHB     PHB     0-47            N/A             N/A
GPU2    NV6     NV6      X      NV6     PHB     PHB     0-47            N/A             N/A
GPU3    NV6     NV6     NV6      X      PHB     PHB     0-47            N/A             N/A
NIC0    PHB     PHB     PHB     PHB      X      PHB
NIC1    PHB     PHB     PHB     PHB     PHB      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1

🐛 Describe the bug

I am running a test python script test_llm.py, test_llm.py code is as follows:

Click to expand test_llm.py ```python import torch from vllm import LLM, SamplingParams import random import random import argparse import time random.seed(0) # Set the random seed for reproducibility dummy_prompt = "hello " * 30 # print(dummy_prompt) prompts = [] with open("./benchmarks/sonnet.txt", "r") as f: prompts = f.readlines() prompts = [prompt.strip() for prompt in prompts] # random.shuffle(prompts) def test_llm(model:str, n, max_tokens, tp_size): prompts_choose = prompts[:n] # print(prompts_choose) # Create a sampling params object. sampling_params = SamplingParams(temperature=0.0, top_p=1.0, max_tokens=max_tokens, ignore_eos=True) # Create an LLM. llm = LLM(model=model, trust_remote_code=True, enforce_eager=True, disable_log_stats=False, max_num_seqs=n, tensor_parallel_size=tp_size, disable_custom_all_reduce=True, gpu_memory_utilization=0.9) # Generate texts from the prompts. The output is a list of RequestOutput objects # that contain the prompt, generated text, and other information. torch.cuda.synchronize() time1 = time.perf_counter() outputs = llm.generate(prompts_choose, sampling_params) torch.cuda.synchronize() time2 = time.perf_counter() print(f"\nllm.generate over. All Generate Time: {time2 - time1:.5f} s\n") # # Print the outputs. # for output in outputs: # prompt = output.prompt # generated_text = output.outputs[0].text # # print(f"Prompt: {prompt!r},\n") # print(f"Generated text: {generated_text!r}\n") def test(): parser = argparse.ArgumentParser(description='Test LLM') parser.add_argument('-n', type=int, default=4, help='Number of prompts') parser.add_argument('-max_tokens', type=int, default=16, help='Maximum number of tokens') parser.add_argument('-tp_size', type=int, default=1, help='Tensor Parallel Size') parser.add_argument('-model', type=str, help='Model path') args = parser.parse_args() n = args.n max_tokens = args.max_tokens tp_size = args.tp_size model = args.model test_llm(model, n, max_tokens, tp_size) test() ```

run command is as follows:

python test_llm.py -n 128 -max_tokens 256 -tp_size 4 -model {YOUR_PATH}

When I use model: qwen2-72b-instruct, max_num_seqs=128, tensor_parallel_size=4, enforce_eager=True, prompts: vllm/benchmarks/sonnet.txt, it crashes inexplicably, with the error RuntimeError. CUDA error: an illegal memory access was encountered.

It has been verified to occur with batch_size=128 (batch_size 64, 256 are normal), max_tokens > 4, (max_tokens 4, 8, 16, 32, 64, 128, 256, etc. all happen).

Also using dummy_prompt = "hello " * 30 will also happen this error.

The error output is:

Processed prompts:   0%|                                                                                              | 0/128 [00:00<?, ?it/s, est. speed input: 0.00 toks/s, output: 0.00 toks/s]Traceback (most recent call last):
  File "/mnt/data/zhuhr/vllm-main/test.log/test_llm.py", line 240, in <module>
    test()
  File "/mnt/data/zhuhr/vllm-main/test.log/test_llm.py", line 238, in test
    test_llm(model, n, max_tokens, tp_size)
  File "/mnt/data/zhuhr/vllm-main/test.log/test_llm.py", line 208, in test_llm
    outputs = llm.generate(prompts_choose, sampling_params)
  File "/mnt/data/zhuhr/vllm-main/vllm/utils.py", line 844, in inner
    return fn(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/entrypoints/llm.py", line 316, in generate
    outputs = self._run_engine(use_tqdm=use_tqdm)
  File "/mnt/data/zhuhr/vllm-main/vllm/entrypoints/llm.py", line 569, in _run_engine
    step_outputs = self.llm_engine.step()
  File "/mnt/data/zhuhr/vllm-main/vllm/engine/llm_engine.py", line 911, in step
    output = self.model_executor.execute_model(
  File "/mnt/data/zhuhr/vllm-main/vllm/executor/distributed_gpu_executor.py", line 76, in execute_model
    driver_outputs = self._driver_execute_model(execute_model_req)
  File "/mnt/data/zhuhr/vllm-main/vllm/executor/multiproc_gpu_executor.py", line 141, in _driver_execute_model
    return self.driver_worker.execute_model(execute_model_req)
  File "/mnt/data/zhuhr/vllm-main/vllm/worker/worker_base.py", line 272, in execute_model
    output = self.model_runner.execute_model(
  File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/worker/model_runner.py", line 1354, in execute_model
    hidden_or_intermediate_states = model_executable(
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/model_executor/models/qwen2.py", line 336, in forward
    hidden_states = self.model(input_ids, positions, kv_caches,
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/model_executor/models/qwen2.py", line 257, in forward
    hidden_states, residual = layer(
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/model_executor/models/qwen2.py", line 209, in forward
    hidden_states = self.self_attn(
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/model_executor/models/qwen2.py", line 156, in forward
    attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1520, in _call_impl
    return forward_call(*args, **kwargs)
  File "/mnt/data/zhuhr/vllm-main/vllm/attention/layer.py", line 97, in forward
    return self.impl.forward(query,
  File "/mnt/data/zhuhr/vllm-main/vllm/attention/backends/flash_attn.py", line 543, in forward
    output[num_prefill_tokens:] = flash_attn_with_kvcache(
RuntimeError: CUDA error: an illegal memory access was encountered
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

[rank0]:[E ProcessGroupNCCL.cpp:1335] [PG 2 Rank 0] NCCL watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Exception raised from c10_cuda_check_implementation at /opt/pytorch/pytorch/c10/cuda/CUDAException.cpp:44 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x99 (0x7ff617f9bdc9 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xe0 (0x7ff617f4c2d0 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x3c2 (0x7ff6221c2142 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10_cuda.so)
frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x6f (0x7ff5b6daf11f in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0x58 (0x7ff5b6db1dd8 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1f3 (0x7ff5b6db9083 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x125 (0x7ff5b6db9ed5 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #7: <unknown function> + 0xdc253 (0x7ff617ab0253 in /lib/x86_64-linux-gnu/libstdc++.so.6)
frame #8: <unknown function> + 0x94ac3 (0x7ff623912ac3 in /lib/x86_64-linux-gnu/libc.so.6)
frame #9: clone + 0x44 (0x7ff6239a3a04 in /lib/x86_64-linux-gnu/libc.so.6)

terminate called after throwing an instance of 'c10::DistBackendError'
  what():  [PG 2 Rank 0] NCCL watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Exception raised from c10_cuda_check_implementation at /opt/pytorch/pytorch/c10/cuda/CUDAException.cpp:44 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x99 (0x7ff617f9bdc9 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xe0 (0x7ff617f4c2d0 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x3c2 (0x7ff6221c2142 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10_cuda.so)
frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x6f (0x7ff5b6daf11f in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0x58 (0x7ff5b6db1dd8 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1f3 (0x7ff5b6db9083 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x125 (0x7ff5b6db9ed5 in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #7: <unknown function> + 0xdc253 (0x7ff617ab0253 in /lib/x86_64-linux-gnu/libstdc++.so.6)
frame #8: <unknown function> + 0x94ac3 (0x7ff623912ac3 in /lib/x86_64-linux-gnu/libc.so.6)
frame #9: clone + 0x44 (0x7ff6239a3a04 in /lib/x86_64-linux-gnu/libc.so.6)

Exception raised from ncclCommWatchdog at /opt/pytorch/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1339 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x99 (0x7ff617f9bdc9 in /usr/local/lib/python3.10/dist-packages/torch/lib/libc10.so)
frame #1: <unknown function> + 0xf6f04e (0x7ff5b6de604e in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #2: <unknown function> + 0xca016a (0x7ff5b6b1716a in /usr/local/lib/python3.10/dist-packages/torch/lib/libtorch_cuda.so)
frame #3: <unknown function> + 0xdc253 (0x7ff617ab0253 in /lib/x86_64-linux-gnu/libstdc++.so.6)
frame #4: <unknown function> + 0x94ac3 (0x7ff623912ac3 in /lib/x86_64-linux-gnu/libc.so.6)
frame #5: clone + 0x44 (0x7ff6239a3a04 in /lib/x86_64-linux-gnu/libc.so.6)

/usr/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown
  warnings.warn('resource_tracker: There appear to be %d '
Aborted

Seems to only happen when batch_size=128, the flash_attn backend output[num_prefill_tokens:] = flash_attn_with_kvcache(...) error, haven't figured out the cause of the error yet..

chenchunhui97 commented 3 months ago

mark

wangye360 commented 3 months ago

+1,same problem, hope it's fixed

github-actions[bot] commented 19 hours ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!