vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
31.04k stars 4.72k forks source link

[Bug]: Can't load BNB model #6861

Open eldarkurtic opened 4 months ago

eldarkurtic commented 4 months ago

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.35

Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-100-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3

Nvidia driver version: 545.23.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      52 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             384
On-line CPU(s) list:                0-383
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 9654 96-Core Processor
CPU family:                         25
Model:                              17
Thread(s) per core:                 2
Core(s) per socket:                 96
Socket(s):                          2
Stepping:                           1
Frequency boost:                    enabled
CPU max MHz:                        3707.8120
CPU min MHz:                        1500.0000
BogoMIPS:                           4800.14
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization:                     AMD-V
L1d cache:                          6 MiB (192 instances)
L1i cache:                          6 MiB (192 instances)
L2 cache:                           192 MiB (192 instances)
L3 cache:                           768 MiB (24 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-95,192-287
NUMA node1 CPU(s):                  96-191,288-383
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.2
[pip3] triton==2.3.1
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.1                    pypi_0    pypi
[conda] torchvision               0.18.1                   pypi_0    pypi
[conda] transformers              4.43.2                   pypi_0    pypi
[conda] triton                    2.3.1                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X  NV18    NV18    NV18    NV18    NV18    NV18    NV18    SYS SYS PIX SYS SYS SYS SYS SYS 0-95,192-287    0       N/A
GPU1    NV18     X  NV18    NV18    NV18    NV18    NV18    NV18    SYS SYS SYS PIX SYS SYS SYS SYS 0-95,192-287    0       N/A
GPU2    NV18    NV18     X  NV18    NV18    NV18    NV18    NV18    SYS PIX SYS SYS SYS SYS SYS SYS 0-95,192-287    0       N/A
GPU3    NV18    NV18    NV18     X  NV18    NV18    NV18    NV18    PIX SYS SYS SYS SYS SYS SYS SYS 0-95,192-287    0       N/A
GPU4    NV18    NV18    NV18    NV18     X  NV18    NV18    NV18    SYS SYS SYS SYS SYS SYS PIX SYS 96-191,288-383  1       N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X  NV18    NV18    SYS SYS SYS SYS SYS SYS SYS PIX 96-191,288-383  1       N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X  NV18    SYS SYS SYS SYS SYS PIX SYS SYS 96-191,288-383  1       N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X  SYS SYS SYS SYS PIX SYS SYS SYS 96-191,288-383  1       N/A
NIC0    SYS SYS SYS PIX SYS SYS SYS SYS  X  SYS SYS SYS SYS SYS SYS SYS
NIC1    SYS SYS PIX SYS SYS SYS SYS SYS SYS  X  SYS SYS SYS SYS SYS SYS
NIC2    PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS  X  SYS SYS SYS SYS SYS
NIC3    SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS  X  SYS SYS SYS SYS
NIC4    SYS SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS  X  SYS SYS SYS
NIC5    SYS SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS  X  SYS SYS
NIC6    SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS  X  SYS
NIC7    SYS SYS SYS SYS SYS PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS  X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7

🐛 Describe the bug

I am trying to evaluate a BNB model (https://huggingface.co/hugging-quants/Meta-Llama-3.1-405B-Instruct-BNB-NF4) through lm-evaluation-harness with vllm. This is the command I am running:

lm_eval \
  --model vllm \
  --model_args pretrained="hugging-quants/Meta-Llama-3.1-405B-Instruct-BNB-NF4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.9 \
  --tasks winogrande \
  --num_fewshot 5 \
  --batch_size 1

and I am seeing the following error (which I think is related to vllm):

WARNING 07-27 13:06:47 config.py:246] bitsandbytes quantization is not fully optimized yet. The speed can be slower than non-quantized models.
INFO 07-27 13:06:47 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='/home/meta-llama/Meta-Llama-3.1-405B-Instruct-BNB-NF4', speculative_config=None, tokenizer='/home/meta-llama/Meta-Llama-3.1-405B-Instruct-BNB-NF4', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=1234, served_model_name=/home/meta-llama/Meta-Llama-3.1-405B-Instruct-BNB-NF4, use_v2_block_manager=False, enable_prefix_caching=False)
INFO 07-27 13:06:51 model_runner.py:680] Starting to load model /home/meta-llama/Meta-Llama-3.1-405B-Instruct-BNB-NF4...
[rank0]: Traceback (most recent call last):
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/bin/lm_eval", line 8, in <module>
[rank0]:     sys.exit(cli_evaluate())
[rank0]:              ^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/github/neuralmagic/lm-evaluation-harness/lm_eval/__main__.py", line 382, in cli_evaluate
[rank0]:     results = evaluator.simple_evaluate(
[rank0]:               ^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/github/neuralmagic/lm-evaluation-harness/lm_eval/utils.py", line 397, in _wrapper
[rank0]:     return fn(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/github/neuralmagic/lm-evaluation-harness/lm_eval/evaluator.py", line 198, in simple_evaluate
[rank0]:     lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
[rank0]:          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/github/neuralmagic/lm-evaluation-harness/lm_eval/api/model.py", line 147, in create_from_arg_string
[rank0]:     return cls(**args, **args2)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/github/neuralmagic/lm-evaluation-harness/lm_eval/models/vllm_causallms.py", line 103, in __init__
[rank0]:     self.model = LLM(**self.model_args)
[rank0]:                  ^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/entrypoints/llm.py", line 155, in __init__
[rank0]:     self.llm_engine = LLMEngine.from_engine_args(
[rank0]:                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 441, in from_engine_args
[rank0]:     engine = cls(
[rank0]:              ^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 251, in __init__
[rank0]:     self.model_executor = executor_class(
[rank0]:                           ^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 47, in __init__
[rank0]:     self._init_executor()
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/executor/gpu_executor.py", line 36, in _init_executor
[rank0]:     self.driver_worker.load_model()
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/worker/worker.py", line 139, in load_model
[rank0]:     self.model_runner.load_model()
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 682, in load_model
[rank0]:     self.model = get_model(model_config=self.model_config,
[rank0]:                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/model_loader/__init__.py", line 21, in get_model
[rank0]:     return loader.load_model(model_config=model_config,
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 280, in load_model
[rank0]:     model = _initialize_model(model_config, self.load_config,
[rank0]:             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 109, in _initialize_model
[rank0]:     quant_config = _get_quantization_config(model_config, load_config)
[rank0]:                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 50, in _get_quantization_config
[rank0]:     quant_config = get_quant_config(model_config, load_config)
[rank0]:                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/model_loader/weight_utils.py", line 130, in get_quant_config
[rank0]:     return quant_cls.from_config(hf_quant_config)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/layers/quantization/bitsandbytes.py", line 52, in from_config
[rank0]:     adapter_name = cls.get_from_keys(config, ["adapter_name_or_path"])
[rank0]:                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/home/eldar/miniconda3/envs/lmeval_llama31/lib/python3.11/site-packages/vllm/model_executor/layers/quantization/base_config.py", line 87, in get_from_keys
[rank0]:     raise ValueError(f"Cannot find any of {keys} in the model's "
[rank0]: ValueError: Cannot find any of ['adapter_name_or_path'] in the model's quantization config.

I am not sure why vllm looks for adapter_name_or_path when the model is just a BNB-quantized to NF4.

jvlinsta commented 4 months ago

Most likely QLoRA is supported, whereas standard bnb quantization is not?

github-actions[bot] commented 4 weeks ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

EzeLLM commented 3 weeks ago

i have the same problem here. cannot load hf model quantized with bnb 4bit


INFO 11-09 07:13:23 api_server.py:528] vLLM API server version 0.6.3.post1
INFO 11-09 07:13:23 api_server.py:529] args: Namespace(subparser='serve', model_tag='unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=4096, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, scheduling_policy='fcfs', disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, dispatch_function=<function serve at 0x7274a195fa30>)
INFO 11-09 07:13:23 api_server.py:166] Multiprocessing frontend to use ipc:///tmp/b4840bb4-04fa-4c2d-8049-69ceb268fc37 for IPC Path.
INFO 11-09 07:13:23 api_server.py:179] Started engine process with PID 36969
WARNING 11-09 07:13:26 config.py:321] bitsandbytes quantization is not fully optimized yet. The speed can be slower than non-quantized models.
WARNING 11-09 07:13:26 arg_utils.py:1019] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
WARNING 11-09 07:13:28 config.py:321] bitsandbytes quantization is not fully optimized yet. The speed can be slower than non-quantized models.
WARNING 11-09 07:13:28 arg_utils.py:1019] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
INFO 11-09 07:13:28 llm_engine.py:237] Initializing an LLM engine (v0.6.3.post1) with config: model='unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit', speculative_config=None, tokenizer='unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit, num_scheduler_steps=1, chunked_prefill_enabled=False multi_step_stream_outputs=True, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=True, mm_processor_kwargs=None)
INFO 11-09 07:13:29 enc_dec_model_runner.py:141] EncoderDecoderModelRunner requires XFormers backend; overriding backend auto-selection and forcing XFormers.
INFO 11-09 07:13:29 selector.py:115] Using XFormers backend.
/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:211: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
  @torch.library.impl_abstract("xformers_flash::flash_fwd")
/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/xformers/ops/fmha/flash.py:344: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.
  @torch.library.impl_abstract("xformers_flash::flash_bwd")
INFO 11-09 07:13:29 model_runner.py:1056] Starting to load model unsloth/Llama-3.2-11B-Vision-Instruct-bnb-4bit...
INFO 11-09 07:13:30 selector.py:115] Using XFormers backend.
INFO 11-09 07:13:30 weight_utils.py:243] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/2 [00:00<?, ?it/s]
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 390, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 139, in from_engine_args
    return cls(
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 78, in __init__
    self.engine = LLMEngine(*args, **kwargs)
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 334, in __init__
    self.model_executor = executor_class(
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 47, in __init__
    self._init_executor()
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 40, in _init_executor
    self.driver_worker.load_model()
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/worker/worker.py", line 183, in load_model
    self.model_runner.load_model()
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1058, in load_model
    self.model = get_model(model_config=self.model_config,
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/model_executor/model_loader/__init__.py", line 19, in get_model
    return loader.load_model(model_config=model_config,
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 402, in load_model
    model.load_weights(self._get_all_weights(model_config, model))
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/model_executor/models/mllama.py", line 1306, in load_weights
    param = params_dict.pop(name)
KeyError: 'language_model.model.layers.0.mlp.down_proj.weight'
Loading safetensors checkpoint shards:   0% Completed | 0/2 [00:00<?, ?it/s]

Traceback (most recent call last):
  File "/home/ezel/miniconda3/envs/310/bin/vllm", line 8, in <module>
    sys.exit(main())
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/scripts.py", line 195, in main
    args.dispatch_function(args)
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/scripts.py", line 41, in serve
    uvloop.run(run_server(args))
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/uvloop/__init__.py", line 82, in run
    return loop.run_until_complete(wrapper())
  File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py", line 552, in run_server
    async with build_async_engine_client(args) as engine_client:
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py", line 107, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/home/ezel/miniconda3/envs/310/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py", line 194, in build_async_engine_client_from_engine_args
    raise RuntimeError(
RuntimeError: Engine process failed to start
(310) ➜  ~