vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
31.31k stars 4.75k forks source link

[Bug]: The Qwen2 model gives no response when the tensor_parallel_size is set to 1. #7059

Closed efficentdet closed 23 hours ago

efficentdet commented 4 months ago

Your current environment

PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64)
GCC version: (GCC) 4.9.2
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.17

Python version: 3.8.19 (default, Mar 20 2024, 19:58:24)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.19.91-011.ali4000.alios7.x86_64-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB

Nvidia driver version: 535.129.03
cuDNN version: /usr/local/cuda-10.1/targets/x86_64-linux/lib/libcudnn.so.7.6.3
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                96
On-line CPU(s) list:   0-95
Thread(s) per core:    2
Core(s) per socket:    24
Socket(s):             2
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 85
Model name:            Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
Stepping:              4
CPU MHz:               2499.999
CPU max MHz:           3100.0000
CPU min MHz:           1000.0000
BogoMIPS:              5000.00
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              1024K
L3 cache:              33792K
NUMA node0 CPU(s):     0-95
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear flush_l1d

Versions of relevant libraries:
[pip3] numpy==1.24.1
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.1+cu121
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.3
[pip3] triton==2.3.1
[conda] numpy                     1.24.1                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.1+cu121              pypi_0    pypi
[conda] torchvision               0.18.1                   pypi_0    pypi
[conda] transformers              4.43.3                   pypi_0    pypi
[conda] triton                    2.3.1                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    NIC0    NIC1    NIC2    NIC3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV1     NV1     NV2     PIX     SYS     SYS     SYS     0-95    0               N/A
GPU1    NV1      X      NV2     NV1     PIX     SYS     SYS     SYS     0-95    0               N/A
GPU2    NV1     NV2      X      NV2     SYS     PIX     SYS     SYS     0-95    0               N/A
GPU3    NV2     NV1     NV2      X      SYS     PIX     SYS     SYS     0-95    0               N/A
NIC0    PIX     PIX     SYS     SYS      X      SYS     SYS     SYS
NIC1    SYS     SYS     PIX     PIX     SYS      X      SYS     SYS
NIC2    SYS     SYS     SYS     SYS     SYS     SYS      X      SYS
NIC3    SYS     SYS     SYS     SYS     SYS     SYS     SYS      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_bond_0
  NIC1: mlx5_bond_1
  NIC2: mlx5_bond_2
  NIC3: mlx5_bond_3

🐛 Describe the bug

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

import torch

# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained('/ProjectRoot/long_content_LLM/qwen/Qwen2-1___5B-Instruct')

texts = []
# Prepare your prompts
# 定义批量数据
prompts = [
    "宪法规定的公民法律义务有",
    "属于专门人民法院的是",
    "无效婚姻的种类包括",
    "刑事案件定义",
    "税收法律制度",
]
for prompt in prompts:
    messages = [
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    texts.append(text)

sampling_params = SamplingParams(temperature=0.1, top_p=0.5, max_tokens=4096)
path = '/ProjectRoot/long_content_LLM/qwen/Qwen2-1___5B-Instruct'
llm = LLM(model=path, trust_remote_code=True, tokenizer_mode="auto", tensor_parallel_size=2, dtype=torch.float16)
outputs = llm.generate(texts, sampling_params)

# 输出结果
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

When I run the following code:

llm=LLM(model=path, trust_remote_code=True, tokenizer_mode="auto", tensor_parallel_size=2, dtype=torch.float16)

the code works without any issues and returns the results I expect. However, when I change the

tensor_parallel_size parameter

to 1 (since I intend to perform offline batch inference on a single GPU), the code gets stuck at this line and does not continue executing. I then checked the GPU memory usage, which was only 309MB.

Here is the terminal output,and it won't throw any errors and exit; it will just stay here and keep running indefinitely.:

截屏2024-08-02 10 49 46

WARNING 08-02 10:42:22 config.py:1425] Casting torch.bfloat16 to torch.float16. INFO 08-02 10:42:22 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='/ProjectRoot/long_content_LLM/qwen/Qwen2-1_5B-Instruct', speculative_config=None, tokenizer='/ProjectRoot/long_contentLLM/qwen/Qwen2-15B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=32768, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=/ProjectRoot/long_content_LLM/qwen/Qwen2-1___5B-Instruct, use_v2_block_manager=False, enable_prefix_caching=False) INFO 08-02 10:42:23 selector.py:151] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. INFO 08-02 10:42:23 selector.py:54] Using XFormers backend. [W socket.cpp:464] [c10d] The server socket cannot be initialized on [::]:59759 (errno: 97 - Address family not supported by protocol). [W socket.cpp:697] [c10d] The client socket cannot be initialized to connect to [11-88-234-70.gpu-exporter.prometheus.svc.cluster.local]:59759 (errno: 97 - Address family not supported by protocol).

How can I resolve this? Any help would be greatly appreciated!

efficentdet commented 4 months ago

Any body help me to solve this plzzz?

github-actions[bot] commented 1 month ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

github-actions[bot] commented 23 hours ago

This issue has been automatically closed due to inactivity. Please feel free to reopen if you feel it is still relevant. Thank you!