vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
31.25k stars 4.75k forks source link

[Bug]: llama3.1-70B RuntimeError: Inplace update to inference tensor outside InferenceMode is not allowed.You can make a clone to get a normal tensor before doing inplace update. #7140

Open duguwanglong opened 4 months ago

duguwanglong commented 4 months ago

Your current environment

Collecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: CentOS Linux 7 (Core) (x86_64)
GCC version: (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.17

Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB

Nvidia driver version: 550.54.15
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                192
On-line CPU(s) list:   0-191
Thread(s) per core:    2
Core(s) per socket:    48
Socket(s):             2
NUMA node(s):          2
Vendor ID:             AuthenticAMD
CPU family:            23
Model:                 49
Model name:            AMD EPYC 7K62 48-Core Processor
Stepping:              0
CPU MHz:               2600.000
CPU max MHz:           2600.0000
CPU min MHz:           1500.0000
BogoMIPS:              5190.28
Virtualization:        AMD-V
L1d cache:             32K
L1i cache:             32K
L2 cache:              512K
L3 cache:              16384K
NUMA node0 CPU(s):     0-47,96-143
NUMA node1 CPU(s):     48-95,144-191
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate retpoline_amd ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] pyzmq==26.1.0
[pip3] torch==2.3.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.3
[pip3] triton==2.3.1
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] pyzmq                     26.1.0                   pypi_0    pypi
[conda] torch                     2.3.1                    pypi_0    pypi
[conda] torchvision               0.18.1                   pypi_0    pypi
[conda] transformers              4.43.3                   pypi_0    pypi
[conda] triton                    2.3.1                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    SYS     0-47,96-143     0               N/A
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    SYS     0-47,96-143     0               N/A
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    PXB     0-47,96-143     0               N/A
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    PXB     0-47,96-143     0               N/A
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS     48-95,144-191   1               N/A
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS     48-95,144-191   1               N/A
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS     48-95,144-191   1               N/A
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS     48-95,144-191   1               N/A
NIC0    SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_bond_0

🐛 Describe the bug

model_param.update({"tensor_parallel_size": 4, "gpu_memory_utilization": 0.99})

plageon commented 3 months ago

same problem

plageon commented 3 months ago

https://github.com/vllm-project/vllm/issues/1968. The solution to a former issue may apply to this as well. Try unset TORCH_DISTRIBUTED_DEBUG

duguwanglong commented 3 months ago

Reference in n No changed. Also has the issue. I use cmdline to infer model. [root@localhost ~]# unset TORCH_DISTRIBUTED_DEBUG I also make the TORCH_DISTRIBUTED_DEBUG==INFO or OFF or DETAIL, but it dosn`t matter. image image

github-actions[bot] commented 3 weeks ago

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!