Open ajayvohra2005 opened 3 months ago
This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!
Your current environment
The output of `python collect_env.py`
```text collecting environment information... WARNING 08-29 18:36:46 _custom_ops.py:18] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") /usr/local/lib/python3.10/dist-packages/vllm/connections.py:8: RuntimeWarning: Failed to read commit hash: No module named 'vllm.commit_id' from vllm.version import __version__ as VLLM_VERSION PyTorch version: 2.1.2+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.7 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.2.0-1017-aws-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 6 BogoMIPS: 5799.87 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 80 MiB (64 instances) L3 cache: 108 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==8.9.2.26 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu12==2.18.1 [pip3] nvidia-nvjitlink-cu12==12.6.20 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pynvml==11.5.3 [pip3] pyzmq==26.2.0 [pip3] torch==2.1.2 [pip3] torch-neuronx==2.1.2.2.2.0 [pip3] torch-xla==2.1.3 [pip3] torchvision==0.16.2 [pip3] transformers==4.44.2 [pip3] transformers-neuronx==0.11.351 [pip3] triton==2.2.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: (0, '+--------+--------+--------+-------------+---------+--------+---------+\n| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | RUNTIME |\n| DEVICE | CORES | MEMORY | DEVICES | BDF | | VERSION |\n+--------+--------+--------+-------------+---------+--------+---------+\n| 12 | 2 | 32 GB | 12, 3, 4, 1 | 10:1e.0 | 865036 | 2.21.41 |\n| 13 | 2 | 32 GB | 13, 0, 5, 2 | 10:1b.0 | 865036 | 2.21.41 |\n| 14 | 2 | 32 GB | 14, 1, 6, 3 | a0:1e.0 | 865036 | 2.21.41 |\n| 15 | 2 | 32 GB | 15, 2, 7, 0 | a0:1b.0 | 865036 | 2.21.41 |\n+--------+--------+--------+-------------+---------+--------+---------+', '') vLLM Version: 0.5.5@COMMIT_HASH_PLACEHOLDER vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: Could not collect ```🐛 Describe the bug
When vLLM is used with Neuron, as long as number of concurrent requests are less than
max_num_seqs
, performance is nominal, but if number of concurrent requests is>= max_num_seqs
, performance degrades dramatically. For example, in one test withmax_num_seqs=4
, request latency for up to3
concurrent requests is in the 20 second range, but with4
concurrent requests, it jumps to over 500 seconds. Logs show continual preemption, even whengpu_memory_utilization = 0.9
.Before submitting a new issue...