vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
31.51k stars 4.79k forks source link

[Usage]: Model Qwen2VLForConditionalGeneration does not support LoRA, but LoRA is enabled. #8484

Closed ComicAuthor closed 2 months ago

ComicAuthor commented 2 months ago

Your current environment

PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35

Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB Nvidia driver version: 550.90.07 cuDNN version: Probably one of the following: /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_adv.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_cnn.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_engines_precompiled.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_engines_runtime_compiled.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_graph.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_heuristic.so.9.2.0 /usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_ops.so.9.2.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True

CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 4 BogoMIPS: 4999.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat Hypervisor vendor: KVM Virtualization type: full L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 4 MiB (4 instances) L3 cache: 33 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Syscall hardening, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown

Versions of relevant libraries: [pip3] flake8==7.1.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.6.68 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pyzmq==26.2.0 [pip3] torch==2.4.0 [pip3] torchvision==0.19.0 [pip3] transformers==4.45.0.dev0 [pip3] triton==3.0.0 [pip3] vector-quantize-pytorch==1.17.1 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-ml-py 12.560.30 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.68 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pyzmq 26.2.0 pypi_0 pypi [conda] torch 2.4.0 pypi_0 pypi [conda] torchfix 0.5.0 pypi_0 pypi [conda] torchvision 0.19.0 pypi_0 pypi [conda] transformers 4.45.0.dev0 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi [conda] vector-quantize-pytorch 1.17.1 pypi_0 pypi ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.1.post2@9ba0817ff1eb514f51cc6de9cb8e16c98d6ee44f vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X 0-7 0 N/A

Legend:

X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks

How would you like to use vllm

After loading the local Qwen2-VL-2B-Struct

model_path = "/root/work/vllm/data/Qwen2-VL-2B-Instruct"

llm = LLM(
    model=model_path,
    limit_mm_per_prompt={"image": 10, "video": 10},
    dtype="float16",
    tensor_parallel_size=1,
    enforce_eager=True,
    enable_lora=True,
)

When I use LLM.GENATE and pass into the Lora_request parameter, the prompt does not support LORA, how should I solve it?

Before submitting a new issue...

DarkLight1337 commented 2 months ago

This is not supported yet. The authors will work on this soon. Please see https://github.com/vllm-project/vllm/pull/7905#issuecomment-2340691862

ComicAuthor commented 2 months ago

This is not supported yet. The authors will work on this soon. Please see #7905 (comment)

Got it, thank u.