vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
29.85k stars 4.51k forks source link

[Misc]: RuntimeError: CUDA error: invalid configuration argument #8539

Open YildizBurhan opened 1 month ago

YildizBurhan commented 1 month ago

Anything you want to discuss about vllm.

I am not sure if this should be a bug report, this is why I am starting by submitting this as a discussion.

We are running vllm on 4 gpus via Kubernetes. Information about the enviroment:

The output of `python collect_env.py` ```text Collecting environment information... PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.12.6 (main, Sep 10 2024, 00:05:17) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-119-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA TITAN RTX GPU 1: NVIDIA TITAN RTX GPU 2: NVIDIA TITAN RTX GPU 3: NVIDIA TITAN RTX Nvidia driver version: 550.107.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 20 On-line CPU(s) list: 0-19 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz Stepping: 4 CPU MHz: 3300.000 CPU max MHz: 4500.0000 CPU min MHz: 1200.0000 BogoMIPS: 6599.98 Virtualization: VT-x L1d cache: 320 KiB L1i cache: 320 KiB L2 cache: 10 MiB L3 cache: 13.8 MiB NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] flashinfer==0.1.6+cu121torch2.4 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.6.68 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pyzmq==26.2.0 [pip3] torch==2.4.0 [pip3] torchvision==0.19.0 [pip3] transformers==4.44.2 [pip3] triton==3.0.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.1.post2@ vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV2 SYS SYS 0-19 0 N/A GPU1 NV2 X SYS SYS 0-19 0 N/A GPU2 SYS SYS X NV2 0-19 0 N/A GPU3 SYS SYS NV2 X 0-19 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks ```

The loaded model is "Hermes-3-Llama-3.1-70B.Q5_K_M.gguf" with tools enabled. The tools functionality is what we are looking into. Using "models--NousResearch--Hermes-3-Llama-3.1-8B" works fine but does not work as great as the openai models so we wanted to try a larger model. But the larger model randomly crashes but I have no idea what the logs are trying to say:

vllm error.log

I searched the available issues for similar errors, but the once I found were showing stacktraces at different places and also marked as solved. I could not get the input dump since I deleted the container while rolling back to the 8B model.

Before submitting a new issue...

PhaneendraGunda commented 1 month ago

I too getting the same error "RuntimeError: CUDA error: invalid configuration argument" with the "llama-3-1-70b-instruct-q5-k-m" model.

youkaichao commented 1 month ago

NVIDIA TITAN RTX

can you try to run it on more recent gpus?

YildizBurhan commented 1 month ago

Unfortunately for now only those are available to me