Collecting environment information...
PyTorch version: N/A
Is debug build: N/A
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.15.0-73-generic-x86_64-with-glibc2.35
Is CUDA available: N/A
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration:
GPU 0: Tesla T4
GPU 1: Tesla T4
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: N/A
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6151 CPU @ 3.00GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 4
BogoMIPS: 6000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat md_clear flush_l1d arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 256 KiB (8 instances)
L1i cache: 256 KiB (8 instances)
L2 cache: 8 MiB (8 instances)
L3 cache: 24.8 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown
Versions of relevant libraries:
[pip3] No relevant packages
[conda] No relevant packages
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB 0-15 0 N/A
GPU1 PHB X 0-15 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
How you are installing vllm
pip install -e .
Building editable for vllm (pyproject.toml) ... error
error: subprocess-exited-with-error
× Building editable for vllm (pyproject.toml) did not run successfully.
│ exit code: 1
╰─> [366 lines of output]
/tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/_subclasses/functional_tensor.py:258: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)
cpu = _conversion_method_template(device=torch.device("cpu"))
running editable_wheel
creating /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info
writing /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/PKG-INFO
writing dependency_links to /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/dependency_links.txt
writing entry points to /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/entry_points.txt
writing requirements to /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/requires.txt
writing top-level names to /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/top_level.txt
writing manifest file '/tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/SOURCES.txt'
reading manifest template 'MANIFEST.in'
adding license file 'LICENSE'
writing manifest file '/tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm.egg-info/SOURCES.txt'
creating '/tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm-0.1.dev2794+g7193774.cu126.dist-info'
creating /tmp/pip-wheel-e84mg27r/.tmp-rt8x061a/vllm-0.1.dev2794+g7193774.cu126.dist-info/WHEEL
running build_py
running build_ext
-- The CXX compiler identification is GNU 11.4.0
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Build type: Debug
-- Target device: cuda
-- Found Python: /usr/local/anaconda3/envs/vllm/bin/python (found version "3.10.0") found components: Interpreter Development.Module Development.SABIModule
-- Found python matching: /usr/local/anaconda3/envs/vllm/bin/python.
-- Found CUDA: /usr/local/cuda (found version "12.6")
-- The CUDA compiler identification is NVIDIA 12.6.68
-- Detecting CUDA compiler ABI info
-- Detecting CUDA compiler ABI info - done
-- Check for working CUDA compiler: /usr/local/cuda/bin/nvcc - skipped
-- Detecting CUDA compile features
-- Detecting CUDA compile features - done
-- Found CUDAToolkit: /usr/local/cuda/include (found version "12.6.68")
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success
-- Found Threads: TRUE
-- Caffe2: CUDA detected: 12.6
-- Caffe2: CUDA nvcc is: /usr/local/cuda/bin/nvcc
-- Caffe2: CUDA toolkit directory: /usr/local/cuda
-- Caffe2: Header version is: 12.6
-- /usr/local/cuda/lib64/libnvrtc.so shorthash is 136e7fe9
-- USE_CUDNN is set to 0. Compiling without cuDNN support
-- USE_CUSPARSELT is set to 0. Compiling without cuSPARSELt support
-- Autodetected CUDA architecture(s): 7.5 7.5
-- Added CUDA NVCC flags for: -gencode;arch=compute_75,code=sm_75
CMake Warning at /tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/share/cmake/Torch/TorchConfig.cmake:22 (message):
static library kineto_LIBRARY-NOTFOUND not found.
Call Stack (most recent call first):
/tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/share/cmake/Torch/TorchConfig.cmake:120 (append_torchlib_if_found)
CMakeLists.txt:84 (find_package)
-- Found Torch: /tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/lib/libtorch.so
-- Enabling core extension.
-- CUDA supported arches: 7.0;7.5;8.0;8.6;8.9;9.0
-- CUDA target arches: 75-real
-- CMake Version: 3.30.3
-- CUTLASS 3.5.1
-- CUDART: /usr/local/cuda/lib64/libcudart.so
-- CUDA Driver: /usr/local/cuda/lib64/stubs/libcuda.so
-- NVRTC: /usr/local/cuda/lib64/libnvrtc.so
-- Default Install Location: install
-- Found Python3: /usr/local/anaconda3/envs/vllm/bin/python3.10 (found suitable version "3.10.0", minimum required is "3.5") found components: Interpreter
-- Make cute::tuple be the new standard-layout tuple type
-- CUDA Compilation Architectures: 70;72;75;80;86;87;89;90;90a
-- Enable caching of reference results in conv unit tests
-- Enable rigorous conv problem sizes in conv unit tests
-- Using NVCC flags: --expt-relaxed-constexpr;-DCUTE_USE_PACKED_TUPLE=1;-DCUTLASS_TEST_LEVEL=0;-DCUTLASS_TEST_ENABLE_CACHED_RESULTS=1;-DCUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED=1;-DCUTLASS_DEBUG_TRACE_LEVEL=0;-Xcompiler=-Wconversion;-Xcompiler=-fno-strict-aliasing;-lineinfo
-- Configuring cublas ...
-- cuBLAS Disabled.
-- Configuring cuBLAS ... done.
-- Machete generation completed successfully.
-- Machete generated sources: /home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4b8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4b8_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4b8_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8b128.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8b128_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u8b128_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4b8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4b8_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u4b8_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8b128.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8b128_impl_part0.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_mm_f16u8b128_impl_part1.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_bf16u4.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_bf16u4b8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_bf16u8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_bf16u8b128.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_f16u4.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_f16u4b8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_f16u8.cu;/home/ws/vllm/csrc/quantization/machete/generated/machete_prepack_f16u8b128.cu
-- Enabling C extension.
-- Enabling moe extension.
-- Build type: Debug
-- Target device: cuda
-- Building vllm-flash-attn inside vLLM. Skipping flag detection and relying on parent build.
-- vllm-flash-attn is available at /tmp/tmp871jv6sq.build-temp/_deps/vllm-flash-attn-src
-- Configuring done (153.7s)
-- Generating done (0.1s)
-- Build files have been written to: /tmp/tmp871jv6sq.build-temp
[1/137] Building CXX object CMakeFiles/_core_C.dir/csrc/core/torch_bindings.cpp.o
[2/137] Linking CXX shared module _core_C.abi3.so
[3/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim192_bf16_causal_sm80.cu.o
[4/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu.o
[5/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu.o
[6/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim160_fp16_causal_sm80.cu.o
[7/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim160_fp16_sm80.cu.o
[8/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim160_bf16_sm80.cu.o
[9/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu.o
[10/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim128_fp16_sm80.cu.o
[11/137] Building CUDA object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/src/flash_fwd_hdim160_bf16_causal_sm80.cu.o
[12/137] Building CXX object _deps/vllm-flash-attn-build/CMakeFiles/vllm_flash_attn_c.dir/csrc/flash_attn/flash_api.cpp.o
[13/137] Building CUDA object CMakeFiles/_C.dir/csrc/cuda_utils_kernels.cu.o
[14/137] Building CXX object CMakeFiles/_moe_C.dir/csrc/moe/torch_bindings.cpp.o
[15/137] Building CXX object CMakeFiles/_C.dir/csrc/torch_bindings.cpp.o
[16/137] Building CUDA object CMakeFiles/_moe_C.dir/csrc/moe/marlin_kernels/marlin_moe_kernel_ku8b128.cu.o
[17/137] Building CUDA object CMakeFiles/_moe_C.dir/csrc/moe/marlin_moe_ops.cu.o
[18/137] Building CUDA object CMakeFiles/_moe_C.dir/csrc/moe/marlin_kernels/marlin_moe_kernel_ku4b8.cu.o
[19/137] Building CUDA object CMakeFiles/_moe_C.dir/csrc/moe/topk_softmax_kernels.cu.o
[20/137] Building CUDA object CMakeFiles/_C.dir/csrc/cache_kernels.cu.o
[21/137] Building CUDA object CMakeFiles/_C.dir/csrc/pos_encoding_kernels.cu.o
[22/137] Building CUDA object CMakeFiles/_C.dir/csrc/activation_kernels.cu.o
[23/137] Building CUDA object CMakeFiles/_C.dir/csrc/prepare_inputs/advance_step.cu.o
/home/ws/vllm/csrc/prepare_inputs/advance_step.cu: In function ‘void prepare_inputs::advance_step_flashinfer(int, int, int, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&)’:
/home/ws/vllm/csrc/prepare_inputs/advance_step.cu:214:8: warning: format ‘%d’ expects argument of type ‘int’, but argument 2 has type ‘int64_t’ {aka ‘long int’} [-Wformat=]
214 | printf(" block_tables.stride(0) = %d\n", block_tables.stride(0));
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
| |
| int64_t {aka long int}
[24/137] Building CUDA object CMakeFiles/_C.dir/csrc/moe_align_block_size_kernels.cu.o
[25/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/compressed_tensors/int8_quant_kernels.cu.o
[26/137] Building CUDA object CMakeFiles/_C.dir/csrc/layernorm_kernels.cu.o
[27/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/fp8/common.cu.o
[28/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/gptq/q_gemm.cu.o
[29/137] Building CUDA object CMakeFiles/_C.dir/csrc/mamba/mamba_ssm/selective_scan_fwd.cu.o
[30/137] Building CUDA object CMakeFiles/_C.dir/csrc/mamba/causal_conv1d/causal_conv1d.cu.o
[31/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/aqlm/gemm_kernels.cu.o
[32/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/awq/gemm_kernels.cu.o
[33/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/marlin/dense/marlin_cuda_kernel.cu.o
[34/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu.o
[35/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu.o
[36/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/gptq_marlin/gptq_marlin_repack.cu.o
[37/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/gptq_marlin/awq_marlin_repack.cu.o
[38/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/fp8/fp8_marlin.cu.o
[39/137] Building CUDA object CMakeFiles/_C.dir/csrc/custom_all_reduce.cu.o
[40/137] Building CUDA object CMakeFiles/_C.dir/csrc/permute_cols.cu.o
[41/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/gptq_marlin/gptq_marlin.cu.o
[42/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/gguf/gguf_kernel.cu.o
[43/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu.o
[44/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4b8.cu.o
[45/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4.cu.o
[46/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u8.cu.o
[47/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u8b128.cu.o
[48/137] Building CUDA object CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu.o
FAILED: CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu.o
/usr/local/cuda/bin/nvcc -forward-unknown-to-host-compiler -DCUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1 -DPy_LIMITED_API=3 -DTORCH_EXTENSION_NAME=_C -DUSE_C10D_GLOO -DUSE_C10D_NCCL -DUSE_DISTRIBUTED -DUSE_RPC -DUSE_TENSORPIPE -D_C_EXPORTS -I/home/ws/vllm/csrc -I/tmp/tmp871jv6sq.build-temp/_deps/cutlass-src/include -isystem /usr/local/anaconda3/envs/vllm/include/python3.10 -isystem /tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/include -isystem /tmp/pip-build-env-2wco638h/overlay/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /usr/local/cuda/include -DONNX_NAMESPACE=onnx_c2 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -g -std=c++17 "--generate-code=arch=compute_75,code=[sm_75]" -Xcompiler=-fPIC --expt-relaxed-constexpr -DENABLE_FP8 --threads=1 -D_GLIBCXX_USE_CXX11_ABI=0 -gencode arch=compute_90a,code=sm_90a -MD -MT CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu.o -MF CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu.o.d -x cu -c /home/ws/vllm/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu -o CMakeFiles/_C.dir/csrc/quantization/machete/generated/machete_mm_bf16u4_impl_part0.cu.o
Killed
Before submitting a new issue...
[X] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Your current environment
How you are installing vllm
Before submitting a new issue...