The output of `python collect_env.py`
```text
python collect_env.py [76/1893]
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-PCIE-32GB
GPU 1: Tesla V100-PCIE-32GB
Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU: [48/1893]
架构: x86_64
CPU 运行模式: 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
字节序: Little Endian
CPU: 16
在线 CPU 列表: 0-15
厂商 ID: GenuineIntel
型号名称: Intel Xeon Processor (Skylake, IBRS)
CPU 系列: 6
型号: 85
每个核的线程数: 2
每个座的核数: 1
座: 8
步进: 4
BogoMIPS: 4589.20
标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxs
r sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 f
ma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefe
tch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx5
12f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke md
_clear
超管理器厂商: KVM
虚拟化类型: 完全
L1d 缓存: 512 KiB (16 instances)
L1i 缓存: 512 KiB (16 instances)
L2 缓存: 32 MiB (8 instances)
L3 缓存: 128 MiB (8 instances)
NUMA 节点: 1
NUMA 节点0 CPU: 0-15
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[conda] No relevant packages
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB 0-15 0 N/A
GPU1 PHB X 0-15 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
```
Model Input Dumps
No response
🐛 Describe the bug
messages = [{"role": "system", "content": "You are an helpful assistant."}]
def chat_with_model(user_input):
messages.append({"role": "user", "content": user_input})
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.7,
top_p=0.8,
# max_tokens=1024,
extra_body={
"repetition_penalty": 1.05
},
stream=True,
)
# 收集回复
full_reply = ""
for chunk in response:
content = chunk.choices[0].delta.content or ""
print(content, end="", flush=True)
full_reply += content
print()
messages.append({"role": "assistant", "content": full_reply})
def save_session():
"""保存当前会话到JSON文件"""
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"message_{timestamp}.json"
with open(filename, 'w', encoding='utf-8') as f:
json.dump(messages, f, ensure_ascii=False, indent=4)
print(f"会话已保存到 {filename}")
def main():
while True:
user_input = []
print("User:", end="")
# 处理多行输入
line = input()
while not line.endswith("\\"):
user_input.append(line)
line = input()
user_input.append(line[:-1]) # 去掉最后一个反斜杠
# 组装完整输入
complete_input = "\n".join(user_input)
if complete_input.lower() == ">exit":
print("退出程序")
break
elif complete_input.lower() == ">save":
save_session()
else:
chat_with_model(complete_input)
if __name__ == "__main__":
print(model_name)
main()
Using Double Tesla V100 to load the Qwen2.5-32B-GPTQ-Int4 model results in all output being exclamation marks.However, loading the 14B-GPTQ-Int8 model or none-quanted Qwen2.5-7B-Instruct model runs normally, suggesting that there might be some compatibility issues with vllm for GPTQ-Int4 quantization.
Before submitting a new issue...
[X] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Your current environment
The output of `python collect_env.py`
```text python collect_env.py [76/1893] Collecting environment information... PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-PCIE-32GB GPU 1: Tesla V100-PCIE-32GB Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: [48/1893] 架构: x86_64 CPU 运行模式: 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual 字节序: Little Endian CPU: 16 在线 CPU 列表: 0-15 厂商 ID: GenuineIntel 型号名称: Intel Xeon Processor (Skylake, IBRS) CPU 系列: 6 型号: 85 每个核的线程数: 2 每个座的核数: 1 座: 8 步进: 4 BogoMIPS: 4589.20 标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxs r sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 f ma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefe tch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx5 12f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke md _clear 超管理器厂商: KVM 虚拟化类型: 完全 L1d 缓存: 512 KiB (16 instances) L1i 缓存: 512 KiB (16 instances) L2 缓存: 32 MiB (8 instances) L3 缓存: 128 MiB (8 instances) NUMA 节点: 1 NUMA 节点0 CPU: 0-15 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.6.77 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pyzmq==26.2.0 [pip3] torch==2.4.0 [pip3] torchvision==0.19.0 [pip3] transformers==4.45.2 [pip3] triton==3.0.0 [conda] No relevant packages ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.3.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X PHB 0-15 0 N/A GPU1 PHB X 0-15 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks ```Model Input Dumps
No response
🐛 Describe the bug
Using Double Tesla V100 to load the Qwen2.5-32B-GPTQ-Int4 model results in all output being exclamation marks.However, loading the 14B-GPTQ-Int8 model or none-quanted Qwen2.5-7B-Instruct model runs normally, suggesting that there might be some compatibility issues with vllm for GPTQ-Int4 quantization.
Before submitting a new issue...