vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
29.63k stars 4.47k forks source link

[Bug]: 我在使用factory_llama工具以qlora的方式训练Qwen/Qwen2.5-1.5B-Instruct模型,然后以vllm加载lora的方式启动,结果报错:AttributeError: Model Qwen2ForCausalLM does not support BitsAndBytes quantization yet.,有大佬知道是哪儿的问题吗 #9901

Open gaojuntian opened 4 days ago

gaojuntian commented 4 days ago

Your current environment

""" This example shows how to use LoRA with different quantization techniques for offline inference.

Requires HuggingFace credentials for access. """

import gc from typing import List, Optional, Tuple

import torch from huggingface_hub import snapshot_download

from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams from vllm.lora.request import LoRARequest

def create_test_prompts( lora_path: str ) -> List[Tuple[str, SamplingParams, Optional[LoRARequest]]]: return [

this is an example of using quantization without LoRA

    ("My name is",
     SamplingParams(temperature=0.0,
                    logprobs=1,
                    prompt_logprobs=1,
                    max_tokens=128), None),
    # the next three examples use quantization with LoRA
    ("my name is",
     SamplingParams(temperature=0.0,
                    logprobs=1,
                    prompt_logprobs=1,
                    max_tokens=128),
     LoRARequest("lora-test-1", 1, lora_path)),
    ("The capital of USA is",
     SamplingParams(temperature=0.0,
                    logprobs=1,
                    prompt_logprobs=1,
                    max_tokens=128),
     LoRARequest("lora-test-2", 1, lora_path)),
    ("The capital of France is",
     SamplingParams(temperature=0.0,
                    logprobs=1,
                    prompt_logprobs=1,
                    max_tokens=128),
     LoRARequest("lora-test-3", 1, lora_path)),
]

def process_requests(engine: LLMEngine, test_prompts: List[Tuple[str, SamplingParams, Optional[LoRARequest]]]): """Continuously process a list of prompts and handle the outputs.""" request_id = 0

while test_prompts or engine.has_unfinished_requests():
    if test_prompts:
        prompt, sampling_params, lora_request = test_prompts.pop(0)
        engine.add_request(str(request_id),
                           prompt,
                           sampling_params,
                           lora_request=lora_request)
        request_id += 1

    request_outputs: List[RequestOutput] = engine.step()
    for request_output in request_outputs:
        if request_output.finished:
            print("----------------------------------------------------")
            print(f"Prompt: {request_output.prompt}")
            print(f"Output: {request_output.outputs[0].text}")

def initialize_engine(model: str, quantization: str, lora_repo: Optional[str]) -> LLMEngine: """Initialize the LLMEngine."""

if quantization == "bitsandbytes":
    # QLoRA (https://arxiv.org/abs/2305.14314) is a quantization technique.
    # It quantizes the model when loading, with some config info from the
    # LoRA adapter repo. So need to set the parameter of load_format and
    # qlora_adapter_name_or_path as below.
    engine_args = EngineArgs(model=model,
                             quantization=quantization,
                             qlora_adapter_name_or_path=lora_repo,
                             load_format="bitsandbytes",
                             enable_lora=True,
                             max_lora_rank=64)
else:
    engine_args = EngineArgs(model=model,
                             quantization=quantization,
                             enable_lora=True,
                             max_loras=4)
return LLMEngine.from_engine_args(engine_args)

def main(): """Main function that sets up and runs the prompt processing."""

test_configs = [{
    "name": "qlora_inference_example",
    'model': "/data/gaojuntian/glm4/LLaMA-Factory/model_dir/Qwen/Qwen2___5-1___5B",
    'quantization': "bitsandbytes",
    'lora_repo': '/data/gaojuntian/llama_last/LLaMA-Factory/saves/qwen2.5_1.5_bnb/lora/sft'
}]

for test_config in test_configs:
    print(
        f"~~~~~~~~~~~~~~~~ Running: {test_config['name']} ~~~~~~~~~~~~~~~~"
    )
    engine = initialize_engine(test_config['model'],
                               test_config['quantization'],
                               test_config['lora_repo'])
    lora_path = snapshot_download(repo_id=test_config['lora_repo'])
    test_prompts = create_test_prompts(lora_path)
    process_requests(engine, test_prompts)

    # Clean up the GPU memory for the next test
    del engine
    gc.collect()
    torch.cuda.empty_cache()

if name == 'main': main()

Model Input Dumps

No response

🐛 Describe the bug

[Bug]: 我在使用factory_llama工具以qlora的方式训练Qwen/Qwen2.5-1.5B-Instruct模型,然后以vllm加载lora的方式启动,结果报错:AttributeError: Model Qwen2ForCausalLM does not support BitsAndBytes quantization yet.,有大佬知道是哪儿的问题吗

Before submitting a new issue...

jeejeelee commented 4 days ago

This feature will be included in the upcoming release, see: https://github.com/vllm-project/vllm/pull/9467 and https://github.com/vllm-project/vllm/pull/9574. You can consider manually build the main branch to address your issue